Development of Solid Electrolytes Using a Combined in-Operando XPS-Theroetical Approach

使用组合的操作中 XPS 理论方法开发固体电解质

基本信息

  • 批准号:
    2879009
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Lithium-ion battery systems are beginning to approach the theoretical limits of their performance and as a result, developments in new Li-ion technologies are becoming increasingly more dependent on gaining a deeper understanding of surface chemistry and its impact on electrochemical response. For renewable energy technologies to become more widely available, it is pertinent that safe, scalable, and reliable methods of energy storage continue to be developed. Battery systems are interface devices and the chemical processes occurring at the interfaces are crucial to overall performance and capacity of the battery.Techniques like x-ray photoelectron spectroscopy (XPS) are increasingly crucial for advancing our understanding of surface and interface chemistry. XPS facilitates the tracking of electrode material oxidation state changes during charge and discharge cycles, and it adeptly detects alterations in chemical environments and the formation of new species at interfaces.Cycling of the battery induces the development of a solid-electrolyte interface (SEI) on the anode. This electronically insulating yet ion-conductive film consists of electrolyte decomposition products, and its impact on cell performance varies based on composition, potentially limiting, or enhancing overall functionality. Surface sensitive techniques are capable of characterising battery interphases, and XPS is surface sensitive as photoelectrons can only escape the sample from the surface region without losing energy and specific chemical and electronic information.In-Operando studies allow for understanding of the growth, composition, and kinetics of forming interphases in solid-state batteries through observation and comparison of shifts in observed XPS peaks. Shifts can be attributed to changes in oxidation state, changes in chemical environment, changes to the energy levels due to sample doping of presence of an applied potential. When used alongside other surface- sensitive techniques, a broad range of information can be obtained about a sample. Techniques such as FTIR and Raman spectroscopy can be used to further understanding of the chemistry occurring at the cathode and the nature of and species formed upon charging or discharging.Comparison of experimental data to computational studies will allow for evaluation of the causes of peak shifts, as theoretical data for the density of states and XPS spectra can be obtained and compare this to what experimental findings through use of in-Operando and post-mortem studies of battery cycling. DFT can give key insights into chemical properties of materials and can be used to assess viability as battery materials. Molecular dynamics simulations will also show key insights into the kinetics of formation of interphases.Initial aims of the project are to compare and reproduce results of existing solid electrolytes, starting with lithium lanthanum titanium oxide and lithium lanthanum zirconium oxide, with this new technique, focusing on avoidance of artefacts in the XPS data and reproduction of accurate electrochemical data, which gives information about capacity, capacity fading, redox potential, and other battery data.From focusing on charge and discharge rates, as this alters the compounds formed and the overall performance of the cell, understanding of dynamics of the cell and interphase formation can be improved, and the results can be applied to developing new electrolyte materials. The effects of alterations to existing solid electrolytes, for example to effect of halogenation, on the performance of the cell can then be studied and applied to production of new materials such as sulfides and composite solid-electrolyte materials.
锂离子电池系统开始接近其性能的理论极限,因此,新锂离子技术的发展越来越依赖于对表面化学及其对电化学响应的影响的深入了解。为了使可再生能源技术更广泛地使用,继续开发安全、可扩展和可靠的能源储存方法至关重要。电池系统是界面设备,界面处发生的化学过程对电池的整体性能和容量至关重要。X射线光电子能谱(XPS)等技术对推进我们对表面和界面化学的理解越来越重要。XPS有助于跟踪电极材料在充放电循环过程中的氧化态变化,并能熟练地检测化学环境的变化和界面处新物种的形成。电池的循环导致阳极上固体电解质界面(SEI)的发展。这种电子绝缘但离子导电的薄膜由电解质分解产物组成,其对电池性能的影响因组成而异,可能限制或增强整体功能。表面敏感技术能够表征电池界面,XPS是表面敏感的,因为光电子只能从样品表面区域逃逸,而不会损失能量和特定的化学和电子信息。In-Operando研究通过观察和比较XPS峰的位移,可以了解固态电池中形成界面的生长、组成和动力学。位移可以归因于氧化态的变化、化学环境的变化、由于样品掺杂或施加电势的存在而导致的能级的变化。当与其他表面敏感技术一起使用时,可以获得关于样品的广泛信息。FTIR和拉曼光谱等技术可用于进一步了解阴极处发生的化学反应以及充电或放电时形成的物质的性质。将实验数据与计算研究进行比较将允许评估峰位移的原因,作为态密度和XPS光谱的理论数据,可以获得,并将其与通过使用In-电池循环的操作和尸检研究。DFT可以提供材料化学性质的关键见解,并可用于评估电池材料的可行性。分子动力学模拟还将显示界面形成动力学的关键见解。该项目的初步目标是用这种新技术比较和再现现有固体电解质的结果,从锂镧钛氧化物和锂镧锆氧化物开始,重点是避免XPS数据中的伪影和再现准确的电化学数据,这提供了有关容量的信息,容量衰减、氧化还原电位和其他电池数据。通过关注充电和放电速率,因为这会改变所形成的化合物和电池的整体性能,可以提高对电池动力学和界面形成的理解,并且结果可以应用于开发新的电解质材料。然后可以研究改变现有固体电解质对电池性能的影响,例如卤化作用的影响,并将其应用于生产新材料,如硫化物和复合固体电解质材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Synthesis of new composite solid state electrolytes and development of high performace and high stability of solid state sodium ion battery
新型复合固态电解质的合成及高性能高稳定性固态钠离子电池的开发
  • 批准号:
    23K04915
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Oxide-based Solid Electrolytes for Stable Operation of High Capacity Metallic Anode in All-solid-state Battery
开发用于全固态电池高容量金属负极稳定运行的氧化物基固体电解质
  • 批准号:
    22H01468
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Development of Recyclable Hybrid Solid Electrolytes for Battery Applications
用于电池应用的可回收混合固体电解质的开发
  • 批准号:
    2716991
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of Soft Solid Electrolytes for All-Solid-State Magnesium Secondary Batteries
全固态镁二次电池软固体电解质的开发
  • 批准号:
    22K19072
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development and application of robust machine-learning interatomic potentials for the computational design of solid electrolytes for all-solid-state batteries
强大的机器学习原子间势的开发和应用,用于全固态电池固体电解质的计算设计
  • 批准号:
    21K14729
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Solid Electrolytes for Solid-State Lithium Batteries
固态锂电池固体电解质的开发
  • 批准号:
    2319594
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of 3D hybrid electrolytes and nanostructured electrodes for scalable manufacturing of new-generation high-energy density solid-state lithium batteries
开发3D混合电解质和纳米结构电极,用于新一代高能量密度固态锂电池的可扩展制造
  • 批准号:
    521217-2018
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Strategic Projects - Group
Development of novel properties of hydride solid electrolytes based on functionality design of complex anions
基于复杂阴离子功能设计开发氢化物固体电解质的新特性
  • 批准号:
    19K15666
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of 3D hybrid electrolytes and nanostructured electrodes for scalable manufacturing of new-generation high-energy density solid-state lithium batteries
开发3D混合电解质和纳米结构电极,用于新一代高能量密度固态锂电池的可扩展制造
  • 批准号:
    521217-2018
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Strategic Projects - Group
Development of 3D hybrid electrolytes and nanostructured electrodes for scalable manufacturing of new-generation high-energy density solid-state lithium batteries********
开发3D混合电解质和纳米结构电极,用于新一代高能量密度固态锂电池的可扩展制造********
  • 批准号:
    521217-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Strategic Projects - Group
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了