Stereoscopic Surface Perception

立体表面感知

基本信息

  • 批准号:
    7177465
  • 负责人:
  • 金额:
    $ 33.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-02-01 至 2010-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): A fundamental problem faced by the visual system is providing information about the 3d environment from the 2d retinal images. Perhaps the most precise source of information arises from the fact that the two eyes have different vantage points. This means that images on the two retinae are not identical. The differences between the locations of matching features on the retinae are binocular disparities and the ability to perceive depth from these disparities is stereopsis. Investigations of inferring 3d layout from disparity fall into two general categories: 1) the estimation of disparity from the retinal images and 2) the interpretation of the estimated disparity. Specific Aim 1 concerns disparity estimation and Specific Aims 2 and 3 concern disparity interpretation. In the experiments and modeling associated with Specific Aim 1, we will examine the spatial and chromatic properties of disparity-estimating mechanisms. We will, for example, determine whether the highest stereo resolution, the disparity-gradient limit, and the difference in stereo sensitivity with luminance as opposed to chromatic stimuli result from using a binocular-matching algorithm that provides piecewise-frontal estimates of the depth map. In some of these experiments, we will improve the optics of the eye and investigate the costs and benefits to stereovision. In the experiments and modeling associated with Specific Aim 2, we will investigate whether disparity and texture slants signals are combined in a weighted sum (for estimating slant) and a difference (for assessing texture homogeneity). We will also examine how changes in the reliability of disparity and texture signals affect these two processes. In the experiments associated with Specific Aim 3, we will study a widely experienced perceptual phenomenon: adaptation to the 3d distortions that result from horizontal magnification of one eye's image. We will try to pinpoint the adaptation mechanism and to determine whether subjects can adapt to two states simultaneously. We will also examine adaptation to a vertical magnification of one's eye image.
描述(由申请人提供):视觉系统面临的基本问题是从2D视网膜图像提供关于3D环境的信息。也许最精确的信息来源来自于两只眼睛具有不同的Vantage位置。这意味着两个视网膜上的图像是不相同的。视网膜上匹配特征的位置之间的差异是双眼视差,并且从这些视差感知深度的能力是立体视觉。从视差推断3d布局的研究分为两大类:1)从视网膜图像估计视差和2)解释估计的视差。具体目标1涉及视差估计,具体目标2和3涉及视差解释。在与特定目标1相关的实验和建模中,我们将研究概率估计机制的空间和色彩特性。例如,我们将确定最高立体分辨率、亮度梯度极限以及与彩色刺激相对的立体灵敏度与亮度的差异是否是使用提供深度图的分段正面估计的双目匹配算法产生的。在其中的一些实验中,我们将改善眼睛的光学特性,并研究立体视觉的成本和收益。在与特定目标2相关的实验和建模中,我们将研究视差和纹理倾斜信号是否以加权和(用于估计倾斜)和差(用于评估纹理均匀性)的方式组合。我们还将研究视差和纹理信号的可靠性的变化如何影响这两个过程。在与特定目标3相关的实验中,我们将研究一种广泛存在的感知现象:对一只眼睛图像水平放大导致的3D失真的适应。我们将试图找出适应机制,并确定受试者是否可以同时适应两种状态。我们还将研究适应一个人的眼睛图像的垂直放大。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARTIN S BANKS其他文献

MARTIN S BANKS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARTIN S BANKS', 18)}}的其他基金

ARBi - Assessment and Rehabilitation of Binocular Sensorimotor Disorders
ARBi - 双眼感觉运动障碍的评估和康复
  • 批准号:
    10366392
  • 财政年份:
    2022
  • 资助金额:
    $ 33.82万
  • 项目类别:
A New Approach to Restoring Visual Acuity and Stereopsis in Adults with Amblyopia
恢复成人弱视患者视力和立体视觉的新方法
  • 批准号:
    10047179
  • 财政年份:
    2010
  • 资助金额:
    $ 33.82万
  • 项目类别:
Improvements in 3D Visualization for Vision Research
视觉研究 3D 可视化的改进
  • 批准号:
    6794034
  • 财政年份:
    2002
  • 资助金额:
    $ 33.82万
  • 项目类别:
Improvements in 3D Visualization for Vision Research
视觉研究 3D 可视化的改进
  • 批准号:
    6936515
  • 财政年份:
    2002
  • 资助金额:
    $ 33.82万
  • 项目类别:
Improvements in 3D Visualization for Vision Research
视觉研究 3D 可视化的改进
  • 批准号:
    7922276
  • 财政年份:
    2002
  • 资助金额:
    $ 33.82万
  • 项目类别:
Improvements in 3D Visualization for Vision Research
视觉研究 3D 可视化的改进
  • 批准号:
    8073465
  • 财政年份:
    2002
  • 资助金额:
    $ 33.82万
  • 项目类别:
Improvements in 3D Visualization for Vision Research
视觉研究 3D 可视化的改进
  • 批准号:
    7466717
  • 财政年份:
    2002
  • 资助金额:
    $ 33.82万
  • 项目类别:
Improvements in 3D Visualization for Vision Research
视觉研究 3D 可视化的改进
  • 批准号:
    6521945
  • 财政年份:
    2002
  • 资助金额:
    $ 33.82万
  • 项目类别:
Improvements in 3D Visualization for Vision Research
视觉研究 3D 可视化的改进
  • 批准号:
    6658194
  • 财政年份:
    2002
  • 资助金额:
    $ 33.82万
  • 项目类别:
CORE--BIOSTATISTICS AND COMPUTER
核心--生物统计学和计算机
  • 批准号:
    6659266
  • 财政年份:
    2002
  • 资助金额:
    $ 33.82万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 33.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了