Constructing a software platform by harnessing emerging data science tools for improved analytics and monitoring of female genital schistosomiasis and

利用新兴数据科学工具构建软件平台,以改进对女性生殖器血吸虫病和艾滋病的分析和监测

基本信息

  • 批准号:
    2881870
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The goal of this project is to develop an open-source, point-of-care data platform that combines automated visual examination technology and individual spatio-temporal risk profiles to assist in female genital schistosomiasis (FGS) diagnostic decision-making. Four smaller work packages, focussing on low-resource intensive data collection/aggregation, machine learning and Bayesian networks, will all feed into a final fifth package to develop the point-of-care platform. Schistosomiasis is second only to malaria in terms for infectious disease public health impact, and FGS is a particularly neglected form of the disease. Safe, accurate, and low-cost diagnostic solutions for FGS are not readily available, and there are still gaps in understanding FGS symptoms and transmission dynamics. The work completed in this project will help improve the current FGS landscape by providing a point-of-care diagnostic software platform to be used by clinicians, including those not speciality trained to review colposcope images. Early and accurate detection of FGS not only means earlier treatment of the disease in an individual but also has positive ramifications for controlling community transmission in endemic areas. Work package one (WP1) will focus on developing and trialling the Badger Data System (BDS). This system is currently at a prototype phase, based on the credit card-sized Badger 2040W E-ink device developed by Pimoroni. This system will be programmed as a daily symptomology diary and given to women as part of a pilot longitudinal study, nested within the Schista! Study in Zambia, to investigate disease dynamics and progression of FGS throughout the menstrual cycle. Not only will the output of this pilot further the understanding of FGS, but it will also result in the development of an open-source data collection system that can be applied in a range of contexts. FGS can be identified through visual examination of the cervix using a colposcope. Work package two (WP2) and three (WP3) will involve refining techniques for colposcope image pre-processing (WP2) and then building a machine learning framework (WP3) for FGS identification and classification, essentially giving a computer the ability to 'see' FGS in a colposcope image. This process is known as automated visual examination (AVE). Various deep learning methods for AVE (convolutional neural networks (CNN), ResNET, Deep SVDD) will be trialled in WP3 and selected for the final data platform based on sensitivity and specificity performance. In regards to the pre-processing (WP2), the machine learning in WP3 will only be as good as the images used for training so both quality and volume are important. To increase the volume of training images, AI-powered image enhancement and pixel upscaling software will be assessed for their accuracy in upscaling colposcope images. If the enhancement is found to be true to life, then these images will be fed into WP3 to increase the sensitivity and specificity of the software platform. This upscaling software may also assist with accurately processing lower-resolution images so that handheld imaging devices (smartphones, digital cameras, handheld colposcopes) can be used.In work package four (WP4), to strengthen the results of the AVE, data from various sources, including the results of WP1, will be collected on variables to increase model sensitivity further. These variables will include individual demographics, temporal, spatial, and environmental data and will be assessed for their association with FGS using various regression techniques and geographic information systems (Eg. ArcGIS). To decode the complex web of disease transmission, the explanatory variables will be integrated into a Bayesian network to produce a risk model, which will be integrated into the software platform for more accurate diagnostic classifications.
该项目的目标是开发一个开放源码的医疗点数据平台,将自动化视觉检查技术和个体时空风险描述相结合,以帮助做出女性生殖器血吸虫病(FGS)的诊断决策。四个较小的工作包,侧重于低资源密集型数据收集/聚合、机器学习和贝叶斯网络,将全部纳入最后的第五个包,以开发护理点平台。就传染病对公共卫生的影响而言,血吸虫病仅次于疟疾,而FGS是一种特别被忽视的疾病。FGS的安全、准确和低成本的诊断解决方案并不容易获得,在理解FGS症状和传播动力学方面仍存在差距。该项目完成的工作将通过提供临床医生使用的护理点诊断软件平台来帮助改善当前的FGS环境,包括那些没有接受过审查镜图像的专业培训的医生。及早和准确地检测FGS不仅意味着对个人疾病的早期治疗,而且对控制流行地区的社区传播也有积极的影响。工作包一(WP1)将侧重于开发和试验獾数据系统(BDS)。该系统目前处于原型阶段,基于皮莫罗尼开发的信用卡大小的獾2040W电子墨水设备。这个系统将被编程为每日症状日记,并作为试点纵向研究的一部分提供给女性,嵌套在Schista!在赞比亚的一项研究,以调查疾病动态和FGS在整个月经周期的进展。这一试点的成果不仅将进一步加深对金融服务全球系统的了解,而且还将导致开发一个可在各种情况下应用的开放源码数据收集系统。FGS可以通过使用镜对宫颈进行肉眼检查来确定。工作包二(WP2)和工作包三(WP3)将涉及改进镜图像预处理(WP2)的技术,然后构建用于FGS识别和分类的机器学习框架(WP3),本质上使计算机具有在镜图像中“看到”FGS的能力。这一过程称为自动目视检查(AVE)。各种用于AVE(卷积神经网络(CNN)、RESNET、Deep SVDD)的深度学习方法将在WP3中进行试验,并根据敏感度和特异度性能选择作为最终数据平台。对于前处理(WP2),WP3中的机器学习只会和用于训练的图像一样好,所以质量和体积都很重要。为了增加训练图像的数量,将评估人工智能图像增强和像素放大软件在提升镜图像方面的准确性。如果增强被发现是逼真的,那么这些图像将被馈送到WP3中,以增加软件平台的敏感性和特异性。这种升级的软件还可以帮助准确处理较低分辨率的图像,以便可以使用手持成像设备(智能手机、数码相机、手持镜)。在第四工作包(WP4)中,为了加强AVE的结果,将收集来自各种来源的数据,包括WP1的结果,以进一步提高模型的灵敏度。这些变量将包括个人人口统计、时间、空间和环境数据,并将使用各种回归技术和地理信息系统(例如。ArcGIS)。为了破译疾病传播的复杂网络,解释变量将被整合到贝叶斯网络中,以产生风险模型,该模型将被整合到软件平台中,以便进行更准确的诊断分类。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

低辐射空间环境下商用多核处理器层次化软件容错技术研究
  • 批准号:
    90818016
  • 批准年份:
    2008
  • 资助金额:
    50.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Automated Software Testing Platform
自动化软件测试平台
  • 批准号:
    10092457
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Elements: An Integrated Software Platform for Simulating Polariton Photochemical and Photophysical Processes
Elements:用于模拟极化子光化学和光物理过程的集成软件平台
  • 批准号:
    2311442
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase II: A Software Platform for Assessment of Untrusted Electronics
SBIR 第二阶段:用于评估不可信电子产品的软件平台
  • 批准号:
    2304533
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
AUTOTRACT - Development of interoperable, low-cost, 'self-driving' software platform for tractor manufacturers
AUTOTRACT - 为拖拉机制造商开发可互操作、低成本的“自动驾驶”软件平台
  • 批准号:
    10057982
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Closed-loop attention bias modification brain training for opioid use disorder
针对阿片类药物使用障碍的闭环注意偏差修正大脑训练
  • 批准号:
    10699099
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
  • 批准号:
    10645919
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Core 1: Biostatistics & Bioinformatics Core
核心1:生物统计学
  • 批准号:
    10716157
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
ISimcha Technology Platform for Recruiting a Diverse Population of Older Adults into Clinical Trials
ISimcha 技术平台,用于招募不同的老年人群进行临床试验
  • 批准号:
    10761602
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了