How to improve measurement of major wheat diseases using artificial intelligence?
如何利用人工智能改进小麦主要病害的监测?
基本信息
- 批准号:2886328
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Fungal diseases of wheat cause significant yield losses and threaten food security. Especially damaging are the five diseases that affect wheat leaves: septoria tritici blotch (STB), yellow rust (YR), brown rust (BR), powdery mildew (PM), and tan spot (TS). In the UK, fungicides and cultivar resistance are the primary ways to control them. Yet, both measures often fail because of the evolutionary adaptation of pathogen populations. Pesticides may negatively affect the environment and human health. Consequently, growers need to reduce fungicide use in favour of integrated pest management (IPM) that emphasizes cultural/genetic control. To achieve this, cropping systems need local adjustments, which requires comprehensive disease monitoring. However, current national monitoring [e.g. UK Department for Environment, Food and Rural Affairs (DEFRA) surveys conducted by ADAS uses visual scoring, which limits the number of fields sampled at a given budget, and has restricted accuracy/reproducibility. These factors limit the utility of the data.The student will develop a novel method to measure the five diseases using digital imaging (DI) and artificial intelligence (AI). The method will exceed existing methods in accuracy and speed. When used in disease monitoring, the method will enable increased sample sizes and improved data quality. This will lead to a more informative disease monitoring, allowing policy-makers to learn more about IPM uptake, its effects, and boost its adoption.Objective A. Develop a new method to detect the presence of each disease on wheat leaves using DI and AI techniques.Objective B. Develop a new method to quantify the amount of each disease within wheat leaves using DI and AI techniques.Objective C. Develop a portable platform to acquire high-quality images of wheat leaves in the field. Objective D. Test the new method in subsets of DEFRA/ADAS's surveys.Detection of disease presence is an image classification problem, while quantification of the amount of disease is an image segmentation problem. For both problems, AI techniques based on convolution neural networks (CNN) offer powerful solutions. The student will build CNN models based on the Python TensorFlow library. The models will be trained on reference datasets comprising leaf images labelled with their disease status (for image classification) and having pixels annotated as those corresponding to healthy or diseased leaf areas (for image segmentation). The student will acquire reference datasets that are sufficiently large, and capture the diversity of leaf phenotypes and disease symptoms.Extensive datasets of STB- and YR-diseased leaf images are available in lead supervisor's lab (>6,000 images for each). The student will use these datasets to create high-quality reference datasets. To acquire reference datasets for BR, PM and TS, the student will conduct replicated field experiments that capture contrasting wheat phenotypes and disease resistance levels. Using these reference datasets, the student will train CNN models to measure the five diseases (Objectives A, B).To improve measurement speed/logistics, we will develop a portable field platform (PhenoBox) that captures leaf images rapidly and non-destructively. PhenoBox consists of a plastic box to block ambient light, a photocamera with a light source will be mounted at the top and a slit at the bottom to insert the leaves. The student will test PhenoBox's prototypes to achieve a working configuration (Objective C).We will bring together the PhenoBox with the trained CNN models, and test the system as part of DEFRA/ADAS's surveys. In parallel with ADAS's field scorers, the student will capture large numbers of leaf images in a subset of farmers' fields (10 out of 300). The student will use the trained CNN models to measure the five diseases, determine the optimal sample size and evaluate the accuracy gain versus existing methods (Objective D).
小麦真菌性病害严重影响小麦产量,威胁粮食安全。特别具有破坏性的是影响小麦叶片的五种疾病:壳针孢斑点病(STB)、黄锈病(YR)、褐锈病(BR)、白粉病(PM)和褐斑病(TS)。在英国,杀菌剂和品种抗性是控制它们的主要方法。然而,这两种措施往往失败,因为病原体种群的进化适应。农药可能对环境和人类健康产生不利影响。因此,种植者需要减少杀真菌剂的使用,以支持强调文化/遗传控制的综合害虫管理(IPM)。为了实现这一目标,种植制度需要进行地方调整,这就需要进行全面的疾病监测。然而,目前由ADAS进行的国家监测[例如,英国环境、食品和农村事务部(DEFRA)调查]使用视觉评分,这限制了在给定预算下采样的字段数量,并且限制了准确性/再现性。这些因素限制了数据的实用性。学生将开发一种新的方法,使用数字成像(DI)和人工智能(AI)来测量五种疾病。该方法在精度和速度上都将超过现有的方法。当用于疾病监测时,该方法将能够增加样本量并提高数据质量。这将导致提供更多信息的疾病监测,使决策者能够更多地了解IPM的采用及其影响,并促进其采用。建立一种利用DI和AI技术检测小麦叶片上每种病害存在的新方法。目的B。利用DI和AI技术建立一种新的小麦叶片病害定量方法。开发一个便携式平台,在田间获取高质量的小麦叶片图像。目标D.在DEFRA/ADAS的调查子集中测试新方法。疾病存在的检测是一个图像分类问题,而疾病数量的量化是一个图像分割问题。对于这两个问题,基于卷积神经网络(CNN)的AI技术提供了强大的解决方案。学生将基于Python TensorFlow库构建CNN模型。这些模型将在参考数据集上进行训练,这些参考数据集包括标记有其疾病状态的叶片图像(用于图像分类),并具有注释为对应于健康或患病叶片区域的像素(用于图像分割)。学生将获得足够大的参考数据集,并捕获叶片表型和疾病症状的多样性。在首席主管的实验室中可获得STB和YR患病叶片图像的广泛数据集(每个图像> 6,000张)。学生将使用这些数据集来创建高质量的参考数据集。为了获得BR,PM和TS的参考数据集,学生将进行重复的田间实验,以捕获对比小麦表型和抗病水平。使用这些参考数据集,学生将训练CNN模型来测量五种疾病(目标A、B)。为了提高测量速度/物流,我们将开发一个便携式现场平台(PhenoBox),可以快速、非破坏性地捕获叶子图像。PhenoBox由一个塑料盒组成,用于阻挡环境光线,顶部安装一个带光源的照相机,底部有一个狭缝用于插入树叶。学生将测试PhenoBox的原型以实现工作配置(目标C)。我们将把PhenoBox与训练的CNN模型结合在一起,并将该系统作为DEFRA/ADAS调查的一部分进行测试。与ADAS的田间评分器并行,学生将在农民的田间子集(300个中的10个)中捕获大量的叶子图像。学生将使用经过训练的CNN模型来测量五种疾病,确定最佳样本量,并评估与现有方法相比的准确性增益(目标D)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
STTR Phase I: Electronic Measurement of Capillary Refill Time to Improve Outcomes from Sepsis
STTR 第一阶段:电子测量毛细血管再充盈时间以改善脓毒症的治疗效果
- 批准号:
2212728 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Rapid measurement of novel harm reduction housing on HIV risk, treatment uptake, drug use and supply
快速测量新型减害住房对艾滋病毒风险、治疗接受情况、毒品使用和供应的影响
- 批准号:
10701309 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Assessing Quality of VA and Community Care in the MISSION Era
评估 MISSION 时代 VA 和社区护理的质量
- 批准号:
10533410 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Reducing Opioid and Other Drug Use in Justice-Involved Emerging Adults using Paraprofessional Coaches (with and without Lived Experience) to Deliver Effective Services in a Non-Treatment Setting
使用辅助专业教练(有或没有生活经验)减少涉及司法的新兴成年人的阿片类药物和其他药物使用,以在非治疗环境中提供有效的服务
- 批准号:
10846139 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of an HPV stigma assessment scale and a stigma-reducing intervention to improve cervical cancer prevention in El Salvador
制定 HPV 耻辱评估量表和减少耻辱干预措施,以改善萨尔瓦多的宫颈癌预防
- 批准号:
10844859 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10805177 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:
10726834 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Sustainability determinants of an intervention to identify clinical deterioration and improve childhood cancer survival in low-resource hospitals
在资源匮乏的医院中识别临床恶化并提高儿童癌症生存率的干预措施的可持续性决定因素
- 批准号:
10562780 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Connected Language and Speech Along the Spectrum of Alzheimer’s Disease and Related Dementias: Digital Assessment and Monitoring.
阿尔茨海默病和相关痴呆症范围内的互联语言和言语:数字评估和监测。
- 批准号:
10662754 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ETAware: Continuous monitoring of the functional impact of essential tremor
ETAware:持续监测特发性震颤的功能影响
- 批准号:
10819790 - 财政年份:2023
- 资助金额:
-- - 项目类别: