Bioimage Suite: A structural, functional and metabolic image analysis platform

Bioimage Suite:结构、功能和代谢图像分析平台

基本信息

  • 批准号:
    7193439
  • 负责人:
  • 金额:
    $ 35.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-04-01 至 2010-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): While both medical imaging acquisition and medical image analysis technology have made enormous progress over the last 20 years, the full power of three-dimensional imaging is still not being fully utilized for evaluating both clinical and basic science hypotheses. This is, in part, due to the lack of easy to use, easily available software that includes state-of-the-art analysis methods. Biolmage Suite represents a coalescence of software development efforts originating at Yale in Image Processing and Analysis, Magnetic Resonance and PET (positron emission tomography) research centers that already incorporates functionality for many image analysis tasks including both automated and interactive segmentation of structural and angiography images, estimation of rigid/non-rigid registration and non-rigid deformation (e.g. in cardiac images) between images, and analysis of functional (fMRI) and diffusion tensor (DTI) magnetic resonance images and will include functionality to process magnetic resonance spectroscopy (MRS), Single Photon Emission Computed Tomography (SPECT), and PET images. Many of the included methods originated as a result of original research in the Yale imaging groups. The fundamental objective of this grant application is to extend, document and further test this software in order to provide a practical software suite for imaging researchers and enable us to freely disseminate it to researchers both at Yale and at other research institutions. We propose the following specific aims. (1) Expand the underlying algorithm base of Biolmage Suite by the addition of a carefully selected set of additional methods, (2) Improve the graphical user interface currently available in Biolmage Suite and add extensive support for database integration that will simplify the task of processing the large sets of images needed for testing hypotheses, (3) Test and verify the correct operation of the software and (4) Fully document the software and make it freely available to the research community. Relevance to Public Health: The availability of advanced computer programs for processing medical images will substantially improve the utilization of medical imaging technology which is a key tool in understanding many important diseases (e.g. diabetes, cardiovascular disease, autism, epilepsy), planning therapy (e.g. neurosurgery) and evaluating other proposed treatment procedures (e.g. new drugs).
描述(由申请人提供):尽管医学图像采集和医学图像分析技术在过去 20 年中取得了巨大进步,但三维成像的全部功能仍未充分利用来评估临床和基础科学假设。这在一定程度上是由于缺乏包含最先进分析方法的易于使用、易于获得的软件。 Biolmage Suite 代表了源自耶鲁大学图像处理和分析、磁共振和 PET(正电子发射断层扫描)研究中心的软件开发工作的结合,该研究中心已经整合了许多图像分析任务的功能,包括结构和血管造影图像的自动和交互式分割、图像之间刚性/非刚性配准和非刚性变形(例如心脏图像)的估计以及功能分析 (fMRI) 和扩散张量 (DTI) 磁共振图像,并将包括处理磁共振波谱 (MRS)、单光子发射计算机断层扫描 (SPECT) 和 PET 图像的功能。所包含的许多方法源自耶鲁大学成像小组的原创研究结果。这项拨款申请的基本目标是扩展、记录和进一步测试该软件,以便为成像研究人员提供实用的软件套件,并使我们能够将其免费传播给耶鲁大学和其他研究机构的研究人员。我们提出以下具体目标。 (1) 通过添加一组精心挑选的附加方法来扩展 Biolmage Suite 的底层算法基础,(2) 改进 Biolmage Suite 中当前可用的图形用户界面,并添加对数据库集成的广泛支持,这将简化处理测试假设所需的大量图像的任务,(3) 测试和验证软件的正确操作,以及 (4) 完整记录软件并免费提供给研究 社区。与公共卫生的相关性:用于处理医学图像的先进计算机程序的可用性将大大提高医学成像技术的利用率,医学成像技术是了解许多重要疾病(例如糖尿病、心血管疾病、自闭症、癫痫)、规划治疗(例如神经外科)和评估其他拟议治疗程序(例如新药)的关键工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XENOPHON PAPADEMETRIS其他文献

XENOPHON PAPADEMETRIS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XENOPHON PAPADEMETRIS', 18)}}的其他基金

Multimodal Image Analysis Software for Epilepsy
癫痫多模态图像分析软件
  • 批准号:
    9205272
  • 财政年份:
    2016
  • 资助金额:
    $ 35.72万
  • 项目类别:
Integration of 3D Slicer and BioImage Suite
3D 切片器和 BioImage Suite 的集成
  • 批准号:
    8073718
  • 财政年份:
    2011
  • 资助金额:
    $ 35.72万
  • 项目类别:
Image-Guided Deep Brain Microscopy for Neurosurgical Intervention
用于神经外科干预的图像引导深部脑显微镜检查
  • 批准号:
    7665033
  • 财政年份:
    2007
  • 资助金额:
    $ 35.72万
  • 项目类别:
Image-Guided Deep Brain Microscopy for Neurosurgical Intervention
用于神经外科干预的图像引导深部脑显微镜检查
  • 批准号:
    7478575
  • 财政年份:
    2007
  • 资助金额:
    $ 35.72万
  • 项目类别:
Image-Guided Deep Brain Microscopy for Neurosurgical Intervention
用于神经外科干预的图像引导深部脑显微镜检查
  • 批准号:
    7304774
  • 财政年份:
    2007
  • 资助金额:
    $ 35.72万
  • 项目类别:
Bioimage Suite: A structural, functional and metabolic image analysis platform
Bioimage Suite:结构、功能和代谢图像分析平台
  • 批准号:
    7350192
  • 财政年份:
    2006
  • 资助金额:
    $ 35.72万
  • 项目类别:
Bioimage Suite: A structural, functional and metabolic image analysis platform
Bioimage Suite:结构、功能和代谢图像分析平台
  • 批准号:
    7564696
  • 财政年份:
    2006
  • 资助金额:
    $ 35.72万
  • 项目类别:
Bioimage Suite: A structural, functional and metabolic image analysis platform
Bioimage Suite:结构、功能和代谢图像分析平台
  • 批准号:
    7068751
  • 财政年份:
    2006
  • 资助金额:
    $ 35.72万
  • 项目类别:
Bioimage Suite: A structural, functional and metabolic image analysis platform
Bioimage Suite:结构、功能和代谢图像分析平台
  • 批准号:
    7844697
  • 财政年份:
    2006
  • 资助金额:
    $ 35.72万
  • 项目类别:
Bioimage Suite: A structural, functional and metabolic image analysis platform
Bioimage Suite:结构、功能和代谢图像分析平台
  • 批准号:
    7495404
  • 财政年份:
    2006
  • 资助金额:
    $ 35.72万
  • 项目类别:

相似海外基金

ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Operating Grants
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Cooperative Agreement
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 35.72万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 35.72万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 35.72万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 35.72万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 35.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了