Bioimage Suite: A structural, functional and metabolic image analysis platform

Bioimage Suite:结构、功能和代谢图像分析平台

基本信息

  • 批准号:
    7564696
  • 负责人:
  • 金额:
    $ 35.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-04-01 至 2011-04-30
  • 项目状态:
    已结题

项目摘要

While both medical imaging acquisition and medical image analysis technology have made enormous progress over the last 20 years, the full power of three-dimensional imaging is still not being fully utilized for evaluating both clinical and basic science hypotheses. This is, in part, due to the lack of easy to use, easily available software that includes state-of-the-art analysis methods. Biolmage Suite represents a coalescence of software development efforts originating at Yale in Image Processing and Analysis, Magnetic Resonance and PET (positron emission tomography) research centers that already incorporates functionality for many image analysis tasks including both automated and interactive segmentation of structural and angiography images, estimation of rigid/non-rigid registration and non-rigid deformation (e.g. in cardiac images) between images, and analysis of functional (fMRI) and diffusion tensor (DTI) magnetic resonance images and will include functionality to process magnetic resonance spectroscopy (MRS), Single Photon Emission Computed Tomography (SPECT), and PET images. Many of the included methods originated as a result of original research in the Yale imaging groups. The fundamental objective of this grant application is to extend, document and further test this software in order to provide a practical software suite for imaging researchers and enable us to freely disseminate it to researchers both at Yale and at other research institutions. We propose.the following specific aims. (1) Expand the underlying algorithm base of Biolmage Suite by the addition of a carefully selected set of additional methods. (2) Improve the graphical user interface currently available in Biolmage Suite and add extensive support for database integration that will simplify the task of processing the large sets of images needed for testing hypotheses, (3) Test and verify the correctoperation of the software and (4) Fully document the software and make it freely available to the research community. Relevance to Public Health: The availability of advanced computer programs for processing medical images will substantially improve the utilization of medical imaging technology which is a key tool in understanding many important diseases (e.g. diabetes, cardiovascular disease, autism, epilepsy), planning therapy (e.g. neurosurgery) and evaluating other proposed treatment procedures (e.g. new drugs)
虽然医学图像采集和医学图像分析技术都取得了巨大的成就, 尽管在过去20年中取得了很大进展,三维成像的全部力量仍然没有被充分利用, 评估临床和基础科学假设。这在一定程度上是由于缺乏易于使用,容易 包括最先进的分析方法的可用软件。Biolmage Suite代表了一种融合 在图像处理和分析,磁共振, 和PET(正电子发射断层扫描)研究中心,已经纳入了许多功能, 图像分析任务,包括结构和血管造影的自动和交互分割 图像之间的刚性/非刚性配准和非刚性变形(例如,在心脏图像中)的估计 图像,并分析功能(fMRI)和弥散张量(DTI)磁共振图像,并将 包括处理磁共振波谱(MRS)、单光子发射 计算机断层扫描(SPECT)和PET图像。许多包含的方法起源于 耶鲁大学成像小组的原创研究。这项拨款申请的基本目标是扩大, 为了给成像研究人员提供一个实用的软件套件, 并使我们能够自由地将其传播给耶鲁大学和其他研究机构的研究人员。我们 提出以下具体目标。(1)扩展Biolmage Suite的底层算法基础, 增加了一套精心挑选的额外方法。(2)改进当前的图形用户界面 并增加了对数据库集成的广泛支持,这将简化 处理检验假设所需的大图像集;(3)检验和验证算法的正确性 软件的完整文档,并使其免费提供给研究社区。 与公共卫生的相关性:处理医学图像的先进计算机程序的可用性 将大大提高医学成像技术的利用率,这是了解 许多重要疾病(如糖尿病、心血管疾病、自闭症、癫痫),规划治疗(如, 神经外科)和评估其他拟议的治疗程序(例如新药)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XENOPHON PAPADEMETRIS其他文献

XENOPHON PAPADEMETRIS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XENOPHON PAPADEMETRIS', 18)}}的其他基金

Multimodal Image Analysis Software for Epilepsy
癫痫多模态图像分析软件
  • 批准号:
    9205272
  • 财政年份:
    2016
  • 资助金额:
    $ 35.55万
  • 项目类别:
Integration of 3D Slicer and BioImage Suite
3D 切片器和 BioImage Suite 的集成
  • 批准号:
    8073718
  • 财政年份:
    2011
  • 资助金额:
    $ 35.55万
  • 项目类别:
Image-Guided Deep Brain Microscopy for Neurosurgical Intervention
用于神经外科干预的图像引导深部脑显微镜检查
  • 批准号:
    7478575
  • 财政年份:
    2007
  • 资助金额:
    $ 35.55万
  • 项目类别:
Image-Guided Deep Brain Microscopy for Neurosurgical Intervention
用于神经外科干预的图像引导深部脑显微镜检查
  • 批准号:
    7665033
  • 财政年份:
    2007
  • 资助金额:
    $ 35.55万
  • 项目类别:
Image-Guided Deep Brain Microscopy for Neurosurgical Intervention
用于神经外科干预的图像引导深部脑显微镜检查
  • 批准号:
    7304774
  • 财政年份:
    2007
  • 资助金额:
    $ 35.55万
  • 项目类别:
Bioimage Suite: A structural, functional and metabolic image analysis platform
Bioimage Suite:结构、功能和代谢图像分析平台
  • 批准号:
    7350192
  • 财政年份:
    2006
  • 资助金额:
    $ 35.55万
  • 项目类别:
Bioimage Suite: A structural, functional and metabolic image analysis platform
Bioimage Suite:结构、功能和代谢图像分析平台
  • 批准号:
    7193439
  • 财政年份:
    2006
  • 资助金额:
    $ 35.55万
  • 项目类别:
Bioimage Suite: A structural, functional and metabolic image analysis platform
Bioimage Suite:结构、功能和代谢图像分析平台
  • 批准号:
    7068751
  • 财政年份:
    2006
  • 资助金额:
    $ 35.55万
  • 项目类别:
Bioimage Suite: A structural, functional and metabolic image analysis platform
Bioimage Suite:结构、功能和代谢图像分析平台
  • 批准号:
    7844697
  • 财政年份:
    2006
  • 资助金额:
    $ 35.55万
  • 项目类别:
Bioimage Suite: A structural, functional and metabolic image analysis platform
Bioimage Suite:结构、功能和代谢图像分析平台
  • 批准号:
    7495404
  • 财政年份:
    2006
  • 资助金额:
    $ 35.55万
  • 项目类别:

相似海外基金

SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Cooperative Agreement
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Operating Grants
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了