Improving Heart Failure Risk Stratification in the ED

改善急诊室的心力衰竭风险分层

基本信息

  • 批准号:
    7248177
  • 负责人:
  • 金额:
    $ 71.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-05-20 至 2011-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): A critical challenge facing emergency department (ED) physicians is how best to manage patients presenting with symptoms of heart failure. Currently, most patients being evaluated for heart failure are admitted to the hospital, yet not all of these patients warrant such intensive treatment, and up to 50% of these admissions could be avoided. Improving the ability of the emergency physician to effectively and safely manage low-risk patients is essential to avoid unnecessary hospitalizations. We propose developing a decision tool derived from prospectively gathered ED data that will predict risk for inpatient or outpatient death and serious in-hospital or out-of-hospital complications. Further, the proposed project will validate the usefulness and generalizability of this decision tool in three different ED environments across racially and socioeconomically diverse patient populations. To develop our decision tool, over 100 variables routinely available to the emergency physician within the first two hours of ED presentation will be considered for inclusion in a statistical risk model. Unlike exisitng models using inpatient data, these measures are representative of actual clinical practice and routinely used to decide a patient's disposition. We will collect standardized data during a patient's evaluation for heart failure. Relying on chart review or large dataset analyses can lead to missing and inconsistent data. We will include all patients evaluated for heart failure regardless of final diagnosis, thus avoiding selection bias inherent in models based on patients with a definitive diagnosis. A fundamental innovation we propose is a tool using 5-day outcomes for primary analyses, and 30-day outcomes for secondary analyses. This overcomes the limitation of 30-day outcome models that are highly dependent on unpredictable, post-visit patient and provider behavior. Another novel aspect of the proposed project is the combining of expertise in emergency medicine, cardiology, and biostatistics to accurately assign post-treatment outcomes to acute presentations. Results will be translated into an algorithm that will be disseminated worldwide. This is the first step toward achieving our broad objective of appropriate allocation of hospital resources to reduce costs of heart failure care. In collaboration with outcomes and effectiveness researchers, we plan to conduct further studies to test the efficacy of our risk model.
描述(由申请人提供):急诊科(艾德)医生面临的一个关键挑战是如何最好地管理出现心力衰竭症状的患者。目前,大多数接受心力衰竭评估的患者都被送进医院,但并非所有这些患者都需要这种强化治疗,其中高达50%的入院是可以避免的。提高急诊医生有效和安全地管理低风险患者的能力对于避免不必要的住院至关重要。我们建议开发一个决策工具,从前瞻性收集的艾德数据,将预测住院或门诊死亡和严重的院内或院外并发症的风险。此外,拟议的项目将验证这一决策工具的有用性和普遍性,在三个不同的艾德环境中的种族和社会经济上不同的患者人群。为了开发我们的决策工具,在艾德就诊的前两个小时内,急诊医生常规可获得的100多个变量将被考虑纳入统计风险模型。与使用住院患者数据的预测模型不同,这些措施代表了实际的临床实践,并经常用于决定患者的处置。我们将在患者心力衰竭评估期间收集标准化数据。依赖图表审查或大型数据集分析可能会导致数据缺失和不一致。我们将纳入所有评估心力衰竭的患者,无论最终诊断如何,从而避免基于确诊患者的模型中固有的选择偏倚。我们提出的一个基本创新是使用5天结果进行主要分析,30天结果进行次要分析的工具。这克服了30天结果模型的局限性,该模型高度依赖于不可预测的访视后患者和提供者行为。拟议项目的另一个新颖方面是结合急诊医学,心脏病学和生物统计学的专业知识,以准确地将治疗后结果分配给急性表现。结果将转化为一种算法,在全世界传播。这是实现我们广泛目标的第一步,即适当分配医院资源以降低心力衰竭护理成本。我们计划与结果和有效性研究人员合作,进行进一步的研究,以测试我们的风险模型的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALAN B STORROW其他文献

ALAN B STORROW的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALAN B STORROW', 18)}}的其他基金

The Vanderbilt Emergency Care Research Training Program
范德比尔特紧急护理研究培训计划
  • 批准号:
    9765367
  • 财政年份:
    2016
  • 资助金额:
    $ 71.91万
  • 项目类别:
The Vanderbilt Emergency Care Research Training Program
范德比尔特紧急护理研究培训计划
  • 批准号:
    9973108
  • 财政年份:
    2016
  • 资助金额:
    $ 71.91万
  • 项目类别:
The Vanderbilt Emergency Care Research Training Program
范德比尔特紧急护理研究培训计划
  • 批准号:
    9162711
  • 财政年份:
    2016
  • 资助金额:
    $ 71.91万
  • 项目类别:
The Vanderbilt Emergency Medicine Research Training Program (VEMRT)
范德比尔特急诊医学研究培训计划 (VEMRT)
  • 批准号:
    8164529
  • 财政年份:
    2011
  • 资助金额:
    $ 71.91万
  • 项目类别:
The Vanderbilt Emergency Medicine Research Training Program (VEMRT)
范德比尔特急诊医学研究培训计划 (VEMRT)
  • 批准号:
    8270457
  • 财政年份:
    2011
  • 资助金额:
    $ 71.91万
  • 项目类别:
The Vanderbilt Emergency Medicine Research Training Program (VEMRT)
范德比尔特急诊医学研究培训计划 (VEMRT)
  • 批准号:
    8502546
  • 财政年份:
    2011
  • 资助金额:
    $ 71.91万
  • 项目类别:
The Vanderbilt Emergency Medicine Research Training Program (VEMRT)
范德比尔特急诊医学研究培训计划 (VEMRT)
  • 批准号:
    8715391
  • 财政年份:
    2011
  • 资助金额:
    $ 71.91万
  • 项目类别:
Improving Heart Failure Risk Stratification in the ED
改善急诊室的心力衰竭风险分层
  • 批准号:
    7842246
  • 财政年份:
    2009
  • 资助金额:
    $ 71.91万
  • 项目类别:
Improving Heart Failure Risk Stratification in the ED
改善急诊室的心力衰竭风险分层
  • 批准号:
    7426917
  • 财政年份:
    2007
  • 资助金额:
    $ 71.91万
  • 项目类别:
Improving Heart Failure Risk Stratification in the ED
改善急诊室的心力衰竭风险分层
  • 批准号:
    7793566
  • 财政年份:
    2007
  • 资助金额:
    $ 71.91万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 71.91万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了