Advanced Surface Protection to Enable Carbon abatement Technologies (ASPECT)

先进的表面保护以实现碳减排技术 (ASPECT)

基本信息

  • 批准号:
    100516
  • 负责人:
  • 金额:
    $ 164.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Collaborative R&D
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Project TitleAdvanced Surface Protection to Enable Carbon abatement Technologies (ASPECT)Project partners and grant fundingDoosan Babcock Energy Ltd (co-ordinator) £204,722E.ON UK (partner) £107,130RWE UK (partner) £73,731Cranfield University (partner) £538,328National Physical Laboratory (partner) £171,266Sulzer Metco (partner) £15,590Monitor Coatings (partner) £163,585Total grant £1,274,352Project descriptionThe ASPECT project is concerned with the developments in materials necessary for the successful implementation of advanced coal-fired utility boiler technologies, with advanced steam conditions and high efficiencies, and fitted with CO2 capture and storage technologies. The reduction of greenhouse gas production from power generation is a key element of the British government's Carbon Abatement Technology strategy, and is a core priority of the Materials for Energy programme.The more arduous operating environments associated with the emerging Carbon Capture and Storage (CCS) technologies and with biomass co-firing are of specific concern. Both the fireside and steam-side of the superheaters/reheater tubes, and the internal surfaces of the steam pipework will be subject to increased wastage rates, as both steam temperatures and pressures are increased in pursuit of the increased cycle efficiencies required to compensate for the efficiency penalties associated with CO2 capture technologies. The Surface Engineering of both the fireside and steam-side surfaces represents one of the preferred options for the mitigation of risks to the key high temperature boiler components.An existing project, funded through the former DTI Technology Programme (Modelling Fireside Corrosion of Heat Exchanger Materials in Advanced Energy Systems), which was completed in 2011, was concerned with the development of the modelling capability to predict the levels of damage that might be expected with the introduction of oxy-combustion and biomass co-firing in existing and new power station boilers. It became clear from the results of this work that there are significant concerns that the materials used in existing boilers, and those being specified for future plant may not be able to deliver the reliability expected from modern power station, principally due to the increased risks of excessive rates of fireside corrosion and steam side oxidation.One of the potential responses is to develop a new generation of protective coatings for key components. To be successful, the fireside coatings have to be suitable for in-situ application in boilers, for installation and repair purposes, while the steam-side coatings have to be applied before the installation of the boiler tubes, and should not cause problems with boiler component fabrication. This approach to the development of protective systems for protection against corrosion in large coal boilers is relatively novel.For the fireside, the emphasis is on the development of a portfolio of sprayable, particulate-based coating compositions and application technologies that can be used in-situ in either new build or retrofit applications, as well as for repair purposes. One of the key innovations here will be to investigate the use of ‘exothermic reaction synthesis’ (ERS) to consolidate coatings of appropriate thicknesses, following their application using cheap, low temperature spraying methods.For steam-side protection, the emphasis is on the development and testing of diffusion coating systems and application methods for the protection of the internal surfaces of boiler tubes and steam pipework. The key issue here is the development of cost-effective application methods for diffusion or slurry coatings, which can be used inside tubular components of many metres in length. The application will probably be after they have been formed into the required shapes, but prior to installation. These components will then be welded together during installation. The coating technology will have to be compatible with these operations both for new build applications and for replacement/repair in plant following periods of serviceThe ASPECT Work Programme is divided into the following tasks:Task 1 Boiler Environments (led by Doosan Babcock Energy Ltd.)This task builds on the knowledge developed in the existing project on modelling corrosion in the fireside environment, and adds similar information for the range of steam-side environments in existing and advanced boilers. A key deliverable from this task is the definition of the components at greatest risk, the description of the metal wastage mechanisms and the specification of the required protective properties of the coatings. The proposed work in this task will also help to define in detail the more practical issues associated with the application and performance of the coatings.Task 2 Coating Design (led by Cranfield University)This task is aimed at building on corrosion data from existing coating compositions to identify the preferred compositions to resist the forms of attack on the fireside and steam-side, as defined in Task 1. For the fireside, this information will be combined with knowledge of the reactive elements required to drive the ERS process for the formulation of powders suitable for spraying the required coating composition. The required compositions will be produced by depositing surface layers on to existing powders using a new facility at Cranfield. Trials of coatings made from these powders will then take place to relate the powder compositions to the ‘fired’ coating compositions.For the steam-side, it is envisaged that existing coating chemistries which are expected to provide good oxidation resistance under the relevant conditions, will be used in vapour or slurry form.The basic characteristics of both types of coating in providing protection from fireside corrosion and stem side oxidation will be evaluated at laboratory scale.Task 3 Coating Application (led jointly by Sulzer Metco and Monitor Coatings)This task is focused on the application methods for both fireside and steam side protection. As indicated above, existing cold spraying methods are preferred for the fireside coatings. Sulzer Metco will develop these methods, within the constraints established for in-situ application in boilers. They will prepare test coupons for screening trials, and further coupons and sub-components for evaluation under Task 4, below.For the steam-side, the coating applications will be further developed by Monitor and coated coupons and test specimens will be prepared for the screening and performance trials.Task 4 Performance Trials and Benchmarking (led jointly by Cranfield and NPL)This task is intended to provide the critical performance data on the new fireside and steam-side coatings, and benchmark this performance against existing alloys and coatings. The metal wastage rate data and coating performance information will come from medium term, i.e. >1000 hour, laboratory tests to assess the coating behaviour under the ranges of expected fireside and steam-side environments, and the results of shorter term tests in pilot scale rigs.Task 5 Plant Trials (led jointly by E.ON and RWEnpower)The final technical task involves the performance of two validation trials in host coal power plants. These start in the final year of the project and run on past the end date. Work started in preparation for this at the beginning of year 2 of the project, leading on to the fabrication of the parts in the second half of year 2. Installation and execution of the trials took place in year 3/4.Task 6 Cost Benefit Analysis and Guidelines (led jointly by Sulzer Metco and Monitor)To assist the rapid deployment of these newly developed fireside and steam-side coatings, a technical and commercial guideline document on the coating technologies and their application, with a number of appropriate illustrative Case Studies, will be prepared.Task 7 Project Management, Dissemination and Exploitation (led by Doosan Babcock Energy Ltd.)Dissemination of the outcomes from the project to the global power generation market place is being pursued through a range of measures. These include the preparation of press releases and technical articles for appropriate publications, participation in relevant international conferences and, where appropriate, the direct organisation of awareness events.
项目合作伙伴和资助doosan Babcock能源有限公司(协调员)204,722英镑。英国安森公司(合作伙伴)£107,130RWE英国(合作伙伴)£73,731克兰菲尔德大学(合作伙伴)£538,328国家物理实验室(合作伙伴)£171,266Sulzer Metco(合作伙伴)£15,590Monitor Coatings(合作伙伴)£163,585总资助£1,274,352项目描述ASPECT项目涉及成功实施先进燃煤公用锅炉技术所需材料的开发,这些技术具有先进的蒸汽条件和高效率。并配备了二氧化碳捕获和储存技术。减少发电产生的温室气体是英国政府碳减排技术战略的关键要素,也是能源材料计划的核心优先事项。与新兴的碳捕集与封存(CCS)技术和生物质共烧相关的更艰苦的操作环境是特别值得关注的。过热器/再热器管的炉边和蒸汽侧以及蒸汽管道的内表面都将面临更高的浪费率,因为为了补偿与二氧化碳捕获技术相关的效率损失,需要提高蒸汽温度和压力,以提高循环效率。炉边和蒸汽侧表面的表面工程是降低高温锅炉关键部件风险的首选方案之一。2011年完成的一个由前DTI技术计划(先进能源系统热交换器材料炉边腐蚀建模)资助的现有项目,涉及建模能力的发展,以预测在现有和新电站锅炉中引入全氧燃烧和生物质共烧后可能出现的损害程度。从这项工作的结果中可以清楚地看出,存在着重大的担忧,即现有锅炉中使用的材料,以及为未来工厂指定的材料,可能无法提供现代电站所期望的可靠性,主要是由于炉边腐蚀和蒸汽侧氧化过高的风险增加。其中一个潜在的解决方案是为关键部件开发新一代保护涂层。为了取得成功,炉边涂层必须适合于锅炉的原位应用,用于安装和维修目的,而蒸汽侧涂层必须在安装锅炉管之前应用,并且不应造成锅炉部件制造的问题。这种开发大型燃煤锅炉防腐保护系统的方法是比较新颖的。对于炉边,重点是开发可喷涂的颗粒基涂料组合物和应用技术,这些技术可以在新建或改造应用中就地使用,也可以用于修复目的。这里的关键创新之一将是研究使用“放热反应合成”(ERS)来巩固适当厚度的涂层,然后使用廉价的低温喷涂方法。对于蒸汽侧保护,重点是扩散涂层系统的开发和测试以及用于保护锅炉管和蒸汽管道内表面的应用方法。这里的关键问题是开发具有成本效益的扩散涂层或浆液涂层的应用方法,这些方法可以在许多米长的管状部件内使用。应用程序可能是在它们形成所需形状之后,但在安装之前。这些组件将在安装过程中焊接在一起。涂层技术必须与新建筑应用和工厂后续服务期间的更换/维修相兼容。ASPECT工作计划分为以下任务:任务1锅炉环境(由斗山巴布科克能源有限公司领导)该任务建立在现有项目中对炉边环境腐蚀建模的知识基础上。并为现有和先进锅炉的蒸汽侧环境范围增加了类似的信息。这项任务的一个关键成果是定义风险最大的部件,描述金属损耗机制和涂层所需防护性能的规格。在这项任务中提出的工作也将有助于详细定义与涂层的应用和性能相关的更实际的问题。任务2涂层设计(由克兰菲尔德大学领导)该任务旨在根据现有涂层成分的腐蚀数据,确定抵抗炉边和蒸汽侧攻击的首选成分,如任务1中所定义。对于炉边,这些信息将与驱动ERS工艺所需的反应性元素的知识相结合,以形成适合喷涂所需涂层组合物的粉末。所需的成分将通过使用克兰菲尔德的新设备在现有粉末上沉积表层来生产。然后进行由这些粉末制成的涂料的试验,将粉末组合物与“烧制”的涂料组合物联系起来。对于蒸汽方面,设想现有的涂层化学物质在相关条件下有望提供良好的抗氧化性,将以蒸汽或浆料形式使用。两种涂层在提供炉边腐蚀和阀杆侧氧化保护方面的基本特性将在实验室规模上进行评估。任务3涂层应用(由Sulzer Metco和Monitor Coatings联合领导)该任务侧重于炉边和蒸汽侧保护的应用方法。如上所述,现有的冷喷涂方法对于炉边涂层是优选的。苏尔寿美科将在锅炉现场应用的限制范围内开发这些方法。他们将为筛选试验准备测试券,并根据下面的任务4准备进一步的测试券和子组件进行评估。对于蒸汽端,涂层应用将由Monitor进一步开发,涂层板和测试样品将准备用于筛选和性能试验。该任务旨在提供新的炉边和蒸汽边涂层的关键性能数据,并将其性能与现有合金和涂层进行基准测试。金属损失率数据和涂层性能信息将来自中期,即100 000小时的实验室测试,以评估在预期炉边和蒸汽边环境范围内的涂层行为,以及中试规模钻机的短期测试结果。工厂试验(由意昂集团和RWEnpower联合领导)最后的技术任务包括在主煤电厂进行两次验证试验。这些在项目的最后一年开始,并在结束日期之后运行。该项目的准备工作在项目的第二年开始,并在第二年下半年开始制造零件。试验的安装和执行在第3/4年进行。为了帮助这些新开发的炉边和蒸汽边涂层的快速部署,将准备一份关于涂层技术及其应用的技术和商业指导文件,并提供一些适当的说明案例研究。任务7:项目管理、宣传和开发(斗山巴布科克能源公司主导)通过一系列措施,将项目成果推广到全球发电市场。这些活动包括为适当的出版物编写新闻稿和技术文章,参加有关的国际会议,并在适当情况下直接组织提高认识活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship

相似国自然基金

“surface-17”量子纠错码在超导量子电路中的实现
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
  • 批准号:
    41974039
  • 批准年份:
    2019
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于surface hopping方法探索有机半导体中激子解体机制
  • 批准号:
    LY19A040007
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于强自旋轨道耦合纳米线自旋量子比特的Surface code量子计算实验研究
  • 批准号:
    11574379
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目
全空间中临界Surface Quasi-geostrophic方程的全局吸引子及其分形维数
  • 批准号:
    11426209
  • 批准年份:
    2014
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
Nano/Micro-surface pattern的摩擦特性研究
  • 批准号:
    50765008
  • 批准年份:
    2007
  • 资助金额:
    22.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Bio-enhanced Surface Protection of Heritage Buildings in UK Island and Coastal Communities for Holistic Carbon Emissions Reduction
对英国岛屿和沿海社区的遗产建筑进行生物增强表面保护,以实现整体碳减排
  • 批准号:
    AH/Y000269/1
  • 财政年份:
    2023
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Research Grant
BIO-SUSHY: Sustainable surface protection by glass-like hybrid and biomaterials coatings
BIO-SUSHY:通过类玻璃混合和生物材料涂层提供可持续的表面保护
  • 批准号:
    10056199
  • 财政年份:
    2023
  • 资助金额:
    $ 164.74万
  • 项目类别:
    EU-Funded
Novel Structured Surface Coatings for Protection from Chemical, Biological and Radiological Agents
用于防护化学、生物和放射制剂的新型结构化表面涂层
  • 批准号:
    2880686
  • 财政年份:
    2022
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
Advancing multilayer surface disinfection technologies for modern pandemic protection
推进多层表面消毒技术以实现现代流行病防护
  • 批准号:
    570425-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Alliance Grants
I-Corps: Surface-ionized personal respiratory protection
I-Corps:表面电离个人呼吸防护
  • 批准号:
    2226175
  • 财政年份:
    2022
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Standard Grant
Advancing multilayer surface disinfection technologies for modern pandemic protection
推进多层表面消毒技术以实现现代流行病防护
  • 批准号:
    570425-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Alliance Grants
Multi surface environmental enzyme spray, providing long-lasting protection against airborne and surface viruses.
多表面环保酶喷雾,针对空气传播和表面病毒提供持久保护。
  • 批准号:
    62866
  • 财政年份:
    2020
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Feasibility Studies
Protection of Li-metal anode by surface coating to enhance the cycling performance of Li-S batteries
通过表面涂层保护锂金属负极以提高锂硫电池的循环性能
  • 批准号:
    2486771
  • 财政年份:
    2019
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Studentship
Dynasore Analogues for Ocular Surface Protection
用于眼表保护的 Dynasore 类似物
  • 批准号:
    10310762
  • 财政年份:
    2019
  • 资助金额:
    $ 164.74万
  • 项目类别:
Study on the growth of graphene on silver thin films for surface protection applicable to surface plasmon resonance biosensors
银薄膜上石墨烯生长的研究,用于表面等离子体共振生物传感器的表面保护
  • 批准号:
    19K05278
  • 财政年份:
    2019
  • 资助金额:
    $ 164.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了