Predictive Modeling of Call Outcomes to Poison Control Center Recommendations
对中毒控制中心建议的呼叫结果进行预测建模
基本信息
- 批准号:7320772
- 负责人:
- 金额:$ 37.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-20 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAttentionBehavioral SciencesBioterrorismCaringCessation of lifeCharacteristicsClassificationClinicalClinical DataCodeCommunicationComplexConsultationsDataDeath RateDevelopmentEmergency SituationEventFoodGenderGoalsHealthHealth ServicesHealthy People 2010HospitalizationHybridsIncidenceIndividualInformaticsInjuryInstitute of Medicine (U.S.)InterventionMarketingMeasuresMediatingMedicalMethodologyMethodsModelingNatureNumbersNursesOutcomePatientsPatternPlayPoisonPoison Control CentersPoisoningPredictive FactorProceduresProcessPublic HealthRecommendationRecordsReportingResearchResearch PersonnelRoleRoterRouteSafetySecondary toServicesSeveritiesSiteSpecialistSpecific qualifier valueSystemSystems AnalysisTelephoneTestingTimeToxic effectTrainingTriageUnited States Health Resources and Services AdministrationUpper armbasedata miningevidence based guidelinesexperiencemedical specialtiesnational surveillancepoison controlpredictive modelingprogramspsychosocialresponsetool
项目摘要
DESCRIPTION (provided by applicant): Over 4 million poisoning episodes occur in the US annually with hospitalization occurring in 300,000. During the 90's, the death rate by poisoning increased by 56% and is now the second leading cause of injury-related deaths. The nation's 61 Poison Control Centers (PCCs) handle approximately 60% of all annual poisoning cases via telephone services. In responding to these phone calls, PCC staff assess the likelihood of adverse medical outcomes secondary to poisonings. Their role is critical in making efficient use of emergency health care services-triaging those individuals who can be managed on site and referring those who may need emergency medical care. Furthermore, HRSA recommended that PCCs serve as the nation's first response system to bioterrorism events. PCC services are dependent on the accurate, rapid, efficient telephone consultation provided by poison control specialists. This focus of this application is the development of an evidence base for PCCs and their staff to use in responding to the increasing national problem of poisoning. Using data from a regional PCC, we propose to develop and test multivariate models of call outcomes to PCC recommendations using behavioral science and informatics-based methodology. The first arm of the study focuses on a modifiable factor-the communication process that occurs during calls at a regional PCC. One thousand calls will be coded with a widely used medical communication coding system. These calls will be stratified based on exposee age and surge (i.e., incidence of high call volume). Guided by a relationship-centered care framework, we will conduct path analyses to test the mediational role specific communications strategies play between a priori selected, nonmodifiable factors (e.g., surge, severity,) and call outcomes. In the second arm of the project, predictive models of call outcomes, based on routinely collected clinical data for one year will be created and evaluated as a potential basis for clinical decision support applications to promote optimal PCC call outcomes. Data mining methods will be used to identify patterns of both coded and textual data and then used to create predictive models. Finally, we will synthesize the findings from Arms 1 and 2 into an exploratory hybrid model. Unique nonmodifiable clinical features identified from Arm 2 will be assessed for their predictive relationship to communication patterns and to call outcomes within the 1000 recorded calls. These Arm 2 features are likely to include and expand upon the nonmodifiable, a priori variables used in Arm 1. This hybrid model-testing will potentially allow us expand the application of communication intervention strategies (resulting from time-intensive quantitative coding) by the use of information derived from large scale predictive modeling with the ultimate goal of promoting optimal PCC call outcomes, and thus reducing adverse health effects.
描述(申请人提供):美国每年发生超过400万起中毒事件,其中30万人住院治疗。上世纪90年代,S的中毒死亡率上升了56%,现已成为伤害死亡的第二大死因。全国61个中毒控制中心(PCCs)通过电话服务处理了每年约60%的中毒案件。在回复这些电话时,PCC工作人员评估中毒继发的不良医疗后果的可能性。他们在有效利用紧急卫生保健服务方面的作用至关重要--对那些可以现场管理的人进行分流,并转介那些可能需要紧急医疗护理的人。此外,人权事务高级专员还建议将初级预防控制中心作为国家对生物恐怖主义事件的第一反应系统。PCC服务依赖于毒物控制专家提供的准确、快速、高效的电话咨询。这一应用的重点是开发一个证据库,供化学品控制中心及其工作人员使用,以应对日益严重的全国中毒问题。利用地区性PCC的数据,我们建议使用行为科学和基于信息学的方法来开发和测试PCC建议的呼叫结果多变量模型。这项研究的第一个方面侧重于一个可修改的因素--在地区PCC通话期间发生的沟通过程。1000个呼叫将使用广泛使用的医疗通信编码系统进行编码。这些电话将根据接触者的年龄和激增(即高呼叫量的发生率)进行分层。在以关系为中心的护理框架指导下,我们将进行路径分析,以测试特定沟通策略在先验选择的不可修改因素(例如,激增、严重性)和呼叫结果之间所起的中介作用。在该项目的第二个分支中,将根据一年的常规收集的临床数据创建和评估呼叫结果预测模型,作为临床决策支持应用程序促进最佳PCC呼叫结果的潜在基础。数据挖掘方法将用于识别编码数据和文本数据的模式,然后用于创建预测模型。最后,我们将把手臂1和手臂2的发现综合成一个探索性的混合模型。将评估ARM 2中确定的独特的不可修改的临床特征,以确定它们与通信模式和1000个录音通话中的通话结果的预测关系。ARM 2的这些功能可能包括和扩展ARM 1中使用的不可修改的先验变量。这种混合模型测试将潜在地允许我们通过使用来自大规模预测建模的信息来扩大通信干预策略(由时间密集型量化编码产生)的应用,最终目标是促进最佳的PCC呼叫结果,从而减少对健康的不利影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee A Ellington其他文献
Lee A Ellington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee A Ellington', 18)}}的其他基金
Research Collaborative for Family Caregivers of Older Adults
老年人家庭照顾者研究合作
- 批准号:
10250337 - 财政年份:2020
- 资助金额:
$ 37.38万 - 项目类别:
Research Collaborative for Family Caregivers of Older Adults
老年人家庭照顾者研究合作
- 批准号:
10400152 - 财政年份:2020
- 资助金额:
$ 37.38万 - 项目类别:
Research Collaborative for Family Caregivers of Older Adults
老年人家庭照顾者研究合作
- 批准号:
10618809 - 财政年份:2020
- 资助金额:
$ 37.38万 - 项目类别:
Research Collaborative for Family Caregivers of Older Adults
老年人家庭照顾者研究合作
- 批准号:
10040338 - 财政年份:2020
- 资助金额:
$ 37.38万 - 项目类别:
Cancer Caregiver interactions with the Hospice team: implications for end of life and bereavement outcomes
癌症护理人员与临终关怀团队的互动:对生命终结和丧亲结果的影响
- 批准号:
9084211 - 财政年份:2016
- 资助金额:
$ 37.38万 - 项目类别:
Cancer Caregiver interactions with the Hospice team: implications for end of life and bereavement outcomes
癌症护理人员与临终关怀团队的互动:对生命终结和丧亲结果的影响
- 批准号:
9319329 - 财政年份:2016
- 资助金额:
$ 37.38万 - 项目类别:
Cancer Caregiver interactions with the Hospice team: implications for end of life and bereavement outcomes
癌症护理人员与临终关怀团队的互动:对生命终结和丧亲结果的影响
- 批准号:
9734178 - 财政年份:2016
- 资助金额:
$ 37.38万 - 项目类别:
Interdisciplinary Training in Cancer, Caregiving and End-of-Life Care
癌症、护理和临终关怀的跨学科培训
- 批准号:
10205175 - 财政年份:2013
- 资助金额:
$ 37.38万 - 项目类别:
Interdisciplinary Training in Cancer, Caregiving and End-of-Life Care
癌症、护理和临终关怀的跨学科培训
- 批准号:
10438712 - 财政年份:2013
- 资助金额:
$ 37.38万 - 项目类别:
Hospice Nurse-Caregiver Communication: Implications for Caregiving & Bereavement
临终关怀护士与护理人员的沟通:对护理的影响
- 批准号:
7887035 - 财政年份:2010
- 资助金额:
$ 37.38万 - 项目类别:
相似国自然基金
多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
- 批准号:
2343858 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
- 批准号:
MR/X032922/1 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
- 批准号:
DP240102605 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
- 批准号:
2343506 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
- 批准号:
24K16033 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
- 批准号:
2336012 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
Continuing Grant
CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
- 批准号:
2312517 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
Standard Grant
CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
- 批准号:
2345898 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
Continuing Grant














{{item.name}}会员




