Computational analysis of diffusion tensor images: application to schizophrenia
扩散张量图像的计算分析:在精神分裂症中的应用
基本信息
- 批准号:7240921
- 负责人:
- 金额:$ 33.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-25 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAffectAlgorithmsAnisotropyBrainClinicalClinical TrialsCognitionComplexComputer AnalysisComputing MethodologiesControlled StudyCross-Sectional StudiesDataDatabasesDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDiseaseDisruptionDoctor of PhilosophyEarly DiagnosisEmotionsEquilibriumEvaluationFamily memberFiberGoalsImageImage AnalysisIndividualInvestigationLeadLearningLesionLimbic SystemLinkMagnetic ResonanceMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsMicroscopicMonitorNeuroanatomyNeurodevelopmental DisorderPathologyPatientsPatternPerformancePlayPopulationProcessProtocols documentationRateRelative (related person)Research PersonnelResolutionRoleSchizophreniaSeveritiesSolutionsSpeedStatistical MethodsStructureSymptomsTechniquesTestingWhite Matter Diseasebasecognitive functionimage processingmyelinationneuropsychologicalprogramstoolvolunteerwater diffusionwhite matterwhite matter change
项目摘要
DESCRIPTION (provided by applicant): Owing to the superior characterization of white matter (WM) provided by Diffusion tensor imaging (DTI), it is being increasingly used in the investigation of several WM diseases. Specifically, DTI has a crucial role to play in the study of non-focal neurodevelopmental diseases such as schizophrenia where the WM abnormalities are more complex and subtle and may manifest as changes in myelination or disruptions in connectivity, dispersed over the whole brain. This has led to a growing need for group-based analysis of DTI data that is expected to better elucidate these subtle anomalies. This has generated the need for sophisticated and fully automated computational neuroanatomy techniques for DTI processing and analysis, crucial because the conventional radiological evaluations have failed to detect substantial white matter differences. Development of such methods is challenging for DTI data as it requires the resolution of several mathematical and technical issues arising from the high dimensionality and complex underlying structure of the tensor data. Although analysis of scalar images, such as diffusivity and anisotropy maps, that are computed from tensors is often used as a first step in analysis of tensor data, these images generally extract limited information from the tensors and therefore do not capture the full effect of pathology. Similar and additional limitations are inherent to fiber tracking also. This project seeks to alleviate these issues by developing analysis methods that apply directly to the diffusion tensor data in its entirety, without having intermediate steps concentrate on scalar measures, thereby extending well-established methods of computational neuroanatomy to tensor data. The crux of the project lies in developing a comprehensive set of tools for the morphometric analysis of DTI data, aiming at facilitating a variety of neuro-imaging studies. An integrated framework for the statistical analysis of diffusion tensor fields will be developed in Aim 2, using manifold learning techniques that determine the underlying manifold structure of the DT measures followed by voxel-wise statistical analysis on these manifolds. Such a group-based analysis will be greatly facilitated by the development of a WM-based spatial normalization framework for DTI data in Aim 1, in which tensors are characterized by rich and distinctive morphological signatures obtained using oriented filters. Finally, in Aim 3, the utility of these methods will be tested on a well characterized large database of schizophrenia patients, their relatives and healthy controls, by studying differences in structural connectivity between the three groups and correlating these with clinical ratings of symptom severity and performance on neuropsychological measurements of emotion and cognition. We expect that on successful completion of the project we will have developed a general, comprehensive and computationally efficient processing and analysis tools for large population DTI studies, set of tools for DTI analysis that can be used to test clinical hypotheses in other disorders involving white matter.
描述(由申请人提供):由于扩散张量成像(DTI)提供的白色物质(WM)的上级表征,它越来越多地用于研究几种WM疾病。具体而言,DTI在非局灶性神经发育疾病(如精神分裂症)的研究中发挥着至关重要的作用,其中WM异常更为复杂和微妙,可能表现为分散在整个大脑中的髓鞘形成或连接中断的变化。这导致了对基于组的DTI数据分析的需求日益增长,期望更好地阐明这些微妙的异常。这就产生了对用于DTI处理和分析的复杂和全自动计算神经解剖学技术的需求,这是至关重要的,因为传统的放射学评价未能检测到实质性的白色物质差异。这种方法的发展是具有挑战性的DTI数据,因为它需要解决的几个数学和技术问题所产生的高维和复杂的底层结构的张量数据。虽然从张量计算的标量图像(例如扩散率和各向异性图)的分析通常用作张量数据分析的第一步,但是这些图像通常从张量提取有限的信息,因此不能捕获病理的全部效果。类似的和附加的限制也是光纤跟踪所固有的。该项目旨在通过开发直接应用于整个扩散张量数据的分析方法来缓解这些问题,而无需中间步骤集中于标量测量,从而将计算神经解剖学的成熟方法扩展到张量数据。该项目的关键在于开发一套全面的工具,用于DTI数据的形态测量分析,旨在促进各种神经成像研究。扩散张量场统计分析的综合框架将在目标2中开发,使用流形学习技术,确定DT措施的基础流形结构,然后对这些流形进行体素统计分析。这样一个基于组的分析将大大促进了基于WM的空间归一化框架的DTI数据在目标1,其中张量的特点是丰富的和独特的形态学签名获得定向过滤器的发展。最后,在目标3中,这些方法的效用将在精神分裂症患者,他们的亲属和健康对照的大型数据库中进行测试,通过研究三组之间结构连接的差异,并将这些与症状严重程度的临床评级和情绪和认知的神经心理学测量的表现相关联。我们希望在成功完成该项目后,我们将为大规模人群DTI研究开发一种通用、全面和计算效率高的处理和分析工具,这套DTI分析工具可用于测试涉及白色物质的其他疾病的临床假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ragini Verma其他文献
Ragini Verma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ragini Verma', 18)}}的其他基金
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
- 批准号:
10551257 - 财政年份:2019
- 资助金额:
$ 33.45万 - 项目类别:
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
- 批准号:
10092221 - 财政年份:2019
- 资助金额:
$ 33.45万 - 项目类别:
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
- 批准号:
9927671 - 财政年份:2019
- 资助金额:
$ 33.45万 - 项目类别:
Harmonization for multisite Connectomics: parsing heterogeneity and creating markers in ASD
多站点连接组学的协调:解析 ASD 中的异质性并创建标记
- 批准号:
10335117 - 财政年份:2019
- 资助金额:
$ 33.45万 - 项目类别:
Temporal connectomics for infant brain: neurodevelopment modulated by pathology
婴儿大脑的颞连接组学:病理学调节的神经发育
- 批准号:
9247655 - 财政年份:2017
- 资助金额:
$ 33.45万 - 项目类别:
Quantifiable markers of ASD via multivariate MEG-DTI combination
通过多元 MEG-DTI 组合可量化 ASD 标记
- 批准号:
8517891 - 财政年份:2013
- 资助金额:
$ 33.45万 - 项目类别:
Quantifiable markers of ASD via multivariate MEG-DTI combination
通过多元 MEG-DTI 组合可量化 ASD 标记
- 批准号:
8679003 - 财政年份:2013
- 资助金额:
$ 33.45万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8722957 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8308691 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
Novel computational methods for higher order diffusion MRI in autism
自闭症高阶扩散 MRI 的新计算方法
- 批准号:
8517817 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Studentship