Bioinformatics for High Throughput Proteomics (Short Course)
高通量蛋白质组学生物信息学(短期课程)
基本信息
- 批准号:BB/D007216/1
- 负责人:
- 金额:$ 6.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The sequencing of the human genome was rightly hailed as a momentous scientific achievement, but it is clear that there are limits to what the genome itself can tell us about how the body works. Perhaps most importantly, the human genome is essentially invariant within a given individual, whereas the protein complement of a cell varies according to the cell type, environmental factors and time. To gain a better insight, it is necessary to study the proteome - the collection of proteins produced by the genome. In recent years, significant investment has been made in laboratory methods capable of identifying proteins in biological samples, such as human tissue and blood. This process of identifying proteins, known as proteomics, used to be time consuming, with only a small number of proteins being identified in a given experiment. However, continued investment has given rise to high throughput proteomics, which allows samples to be processed much faster, and for many more proteins to be identified in a given time. As in previous area of bioanalytical science (e.g. DNA sequencing), the move to high throughput has led to an explosion in the amount of data being produced in proteomics experiments. To fully make use of this data, computational biology solutions (bioinformatics) must be used. This fast moving field is difficult to keep abreast of, so we propose to offer a short course designed to brief proteomics practitioners on the approaches available, and train them in how best to use these approaches to facilitate their research.
人类基因组测序被正确地誉为一项重大的科学成就,但很明显,基因组本身可以告诉我们身体如何工作的东西是有限的。也许最重要的是,人类基因组在给定个体内基本上是不变的,而细胞的蛋白质补体根据细胞类型、环境因素和时间而变化。为了获得更好的洞察力,有必要研究蛋白质组-由基因组产生的蛋白质的集合。近年来,在能够鉴定生物样品(例如人体组织和血液)中的蛋白质的实验室方法方面进行了大量投资。这种识别蛋白质的过程被称为蛋白质组学,过去非常耗时,在给定的实验中只能识别少量蛋白质。然而,持续的投资已经引起了高通量蛋白质组学的发展,这使得样品的处理速度更快,并且在给定的时间内识别出更多的蛋白质。与生物分析科学的先前领域(例如DNA测序)一样,向高通量的转变导致了蛋白质组学实验中产生的数据量的爆炸式增长。为了充分利用这些数据,必须使用计算生物学解决方案(生物信息学)。这个快速发展的领域很难跟上,所以我们建议提供一个短期课程,旨在向蛋白质组学从业者介绍可用的方法,并培训他们如何最好地使用这些方法来促进他们的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Conrad Bessant其他文献
Deriving Meaningful Aspects of Health Related to Physical Activity in Chronic Disease: Concept Elicitation Using Machine Learning–Assisted Coding of Online Patient Conversations
- DOI:
10.1016/j.jval.2023.01.022 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Bill Byrom;Conrad Bessant;Fabrizio Smeraldi;Maryam Abdollahyan;Yasemin Bridges;Marzana Chowdhury;Asiyya Tahsin - 通讯作者:
Asiyya Tahsin
Conrad Bessant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Conrad Bessant', 18)}}的其他基金
PIT-DB: A Resource for Sharing, Annotating and Analysing Translated Genomic Elements
PIT-DB:用于共享、注释和分析翻译基因组元素的资源
- 批准号:
BB/M020118/1 - 财政年份:2015
- 资助金额:
$ 6.82万 - 项目类别:
Research Grant
Proteomics Goes Viral: Novel Resources for Identification and Quantification of Virus Proteins
蛋白质组学病毒式传播:用于病毒蛋白鉴定和定量的新资源
- 批准号:
BB/L018438/1 - 财政年份:2014
- 资助金额:
$ 6.82万 - 项目类别:
Research Grant
An Integrated Open Source Software Resource for Quantitative Proteomics
用于定量蛋白质组学的集成开源软件资源
- 批准号:
BB/I001131/2 - 财政年份:2013
- 资助金额:
$ 6.82万 - 项目类别:
Research Grant
Galaxy Workflows for Proteomics Informed by Transcriptomics (PIT)
Galaxy 转录组学蛋白质组学工作流程 (PIT)
- 批准号:
BB/K016075/1 - 财政年份:2013
- 资助金额:
$ 6.82万 - 项目类别:
Research Grant
An Integrated Open Source Software Resource for Quantitative Proteomics
用于定量蛋白质组学的集成开源软件资源
- 批准号:
BB/I001131/1 - 财政年份:2010
- 资助金额:
$ 6.82万 - 项目类别:
Research Grant
X-tracker: a generic quantitation tool for MS-based proteomics:
X-tracker:基于 MS 的蛋白质组学通用定量工具:
- 批准号:
BB/F016107/1 - 财政年份:2008
- 资助金额:
$ 6.82万 - 项目类别:
Research Grant
Further Development of the Genome Annotating Proteomic Pipeline
基因组注释蛋白质组管道的进一步发展
- 批准号:
BB/E01237X/1 - 财政年份:2007
- 资助金额:
$ 6.82万 - 项目类别:
Research Grant
相似海外基金
Unlocking deubiquitinase probe discovery by high-throughput in-cell chemical proteomics
通过高通量细胞内化学蛋白质组学解锁去泛素酶探针发现
- 批准号:
2886820 - 财政年份:2023
- 资助金额:
$ 6.82万 - 项目类别:
Studentship
SBIR PHASE II, TOPIC 420: INTEGRATED PLATFORM AND CONSUMABLES FOR ROBUST, SENSITIVE AND HIGH-THROUGHPUT SINGLE-CELL PROTEOMICS
SBIR 第二阶段,主题 420:用于稳健、灵敏和高通量单细胞蛋白质组学的集成平台和耗材
- 批准号:
10948319 - 财政年份:2023
- 资助金额:
$ 6.82万 - 项目类别:
High Throughput Methods for Single Cell Proteomics
单细胞蛋白质组学的高通量方法
- 批准号:
10609071 - 财政年份:2022
- 资助金额:
$ 6.82万 - 项目类别:
Development of high-throughput single-cell proteomics system
高通量单细胞蛋白质组学系统开发
- 批准号:
22H02604 - 财政年份:2022
- 资助金额:
$ 6.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High Throughput Methods for Single Cell Proteomics
单细胞蛋白质组学的高通量方法
- 批准号:
10433158 - 财政年份:2022
- 资助金额:
$ 6.82万 - 项目类别:
MCA: Utilizing high-throughput proteomics to build a conceptual model of the effects of environmental change on early life stages of genetically diverse herring populations
MCA:利用高通量蛋白质组学建立环境变化对遗传多样性鲱鱼种群早期生命阶段影响的概念模型
- 批准号:
2219978 - 财政年份:2022
- 资助金额:
$ 6.82万 - 项目类别:
Standard Grant
Increasing capabilities for robust high-throughput clinical proteomics within the Centre for Proteome Research at the University of Liverpool
利物浦大学蛋白质组研究中心增强高通量临床蛋白质组学的能力
- 批准号:
MR/X013782/1 - 财政年份:2022
- 资助金额:
$ 6.82万 - 项目类别:
Research Grant
Developing high throughput single cell proteomics
开发高通量单细胞蛋白质组学
- 批准号:
nhmrc : 2001066 - 财政年份:2021
- 资助金额:
$ 6.82万 - 项目类别:
Ideas Grants
Fully automated and ultra-high-throughput platform for in-depth single-cell proteomics
用于深入单细胞蛋白质组学的全自动和超高通量平台
- 批准号:
10034850 - 财政年份:2020
- 资助金额:
$ 6.82万 - 项目类别:
Fully automated and ultra-high-throughput platform for in-depth single-cell proteomics
用于深入单细胞蛋白质组学的全自动和超高通量平台
- 批准号:
10796347 - 财政年份:2020
- 资助金额:
$ 6.82万 - 项目类别: