Development of dynamic 3D culture systems for maintenance and expansion of pluripotent embryonic stem cells
开发用于维持和扩增多能胚胎干细胞的动态 3D 培养系统
基本信息
- 批准号:BB/D014549/1
- 负责人:
- 金额:$ 28.9万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stem cells are present within our bodies throughout our lives and are very important because they make sure that as damaged and worn out cells die, there is a supply of new cells to replace them. Some organs and tissues have a tremendous capacity to replace cells, for example the blood system, the liver and the inner lining of the gut. However, other tissues, for example the brain and heart, have almost no capacity for regeneration. Stem cells have been isolated from embryos at very early stages of development (termed embryonic stem cells) and also from a variety of adult sources including bone marrow, gut and muscle. Research has shown that these stem cells have two remarkable properties. They can divide and form two identical stem cells, i.e. self-renew themselves, or they can form many other types of cells by a process called differentiation. There is currently great interest in harnessing these unique properties of stem cells because by using stem cells it may be possible to generate cells outside the body i.e. in the laboratory, that can then be used to replace damaged tissues inside the body. Many chronic diseases cannot currently be effectively treated because loss of cells is the underlying cause. Several brain disorders occur because certain nerve cells die, e.g. in Parkinson's disease. In childhood diabetes, the cells of the pancreas that normally act to control the level of sugar in the blood are destroyed meaning patients are reliant on regular injections of the hormone insulin in an attempt to regulate their blood sugar levels. Stem cell-based therapies offer potentially exciting alternative treatments for the sufferers of such diseases. However, much more research needs to be carried out on stem cells and their behaviour before such advances will be brought into modern day medical practice. The environment that normally supports the growth and survival of stem cells within the body has 3-dimensional architecture and there is increasing evidence that this 3D microenvironment is critical for maintenance of the stem cell phenotype. However, the methods currently used in laboratories to expand and then study stem cells rely largely on 2-dimensional cultures. In this proposal we want to develop ways in which embryonic stem cells can be maintained and expanded in 3-dimensional dynamic culture systems, since this would more closely mimic their natural environment within the developing blastocyst of the host. Such 3-dimensional culture could afford significant advantages over culture in 2-dimensions. We will investigate the ability of scaffolds made of different materials, with different surface modifications, to maintain ES cell growth and self-renewal. We will further investigate the effects of different bioreactor formats and the influence of different growth factors on ES cell maintenance and growth. Our aim is to begin by studying the behaviour of ES cells derived from mice, but in parallel to initiate experiments with human ES cells. We hope that these studies will enable us to optimise the most appropriate dynamic 3D culture system that allows for expansion and maintenance of hES cells. This is an important goal that needs to be addressed if basic stem cell research is to be successfully translated into the clinic. Such expansion is critical for future applications in situations where large numbers of undifferentiated human ES cells are required, for example application of these developments could make it possible to grow large numbers of undifferentiated stem cells that can subsequently be differentiated into e.g. nerve cells, liver cells etc and used to replace damaged cells and tissues in patients suffering from chronic diseases. Such cell-based strategies offer real hope for the sufferers of many such diseases and the research proposed here could be of real benefit in the medium to longer-term.
干细胞在我们的一生中都存在于我们的体内,而且非常重要,因为它们确保在受损和磨损的细胞死亡时,有新的细胞供应来取代它们。一些器官和组织具有巨大的替代细胞的能力,例如血液系统、肝脏和肠道内层。然而,其他组织,例如大脑和心脏,几乎没有再生能力。干细胞已经从发育非常早期的胚胎(称为胚胎干细胞)中分离出来,也从包括骨髓、肠道和肌肉在内的各种成人来源中分离出来。研究表明,这些干细胞有两个显著的特性。它们可以分裂并形成两个相同的干细胞,即自我更新,或者它们可以通过一个称为分化的过程形成许多其他类型的细胞。目前人们对利用干细胞的这些独特特性非常感兴趣,因为通过使用干细胞,有可能在体外(即在实验室)产生细胞,然后这些细胞可以用来替代体内受损的组织。许多慢性病目前无法有效治疗,因为细胞丢失是根本原因。一些脑部疾病的发生是因为某些神经细胞死亡,例如帕金森氏症。在儿童糖尿病患者中,通常控制血液中血糖水平的胰腺细胞被破坏,这意味着患者需要定期注射胰岛素激素,以试图调节他们的血糖水平。干细胞疗法为此类疾病的患者提供了潜在的令人兴奋的替代疗法。然而,在将这些进步带入现代医学实践之前,还需要对干细胞及其行为进行更多的研究。通常支持干细胞在体内生长和存活的环境具有三维结构,越来越多的证据表明,这种三维微环境对干细胞表型的维持至关重要。然而,目前实验室中用于扩增和研究干细胞的方法在很大程度上依赖于二维培养。在这项建议中,我们希望开发出胚胎干细胞可以在三维动态培养系统中保持和扩增的方法,因为这将更接近于在宿主发育的囊胚中模拟它们的自然环境。这样的三维文化可以提供显著的优势,而不是二维文化。我们将研究不同材料制成的支架,经过不同的表面修饰,保持ES细胞生长和自我更新的能力。我们将进一步研究不同生物反应器形式的效果以及不同生长因子对ES细胞维持和生长的影响。我们的目标是从研究来自小鼠的ES细胞的行为开始,但同时启动对人类ES细胞的实验。我们希望这些研究将使我们能够优化最合适的动态3D培养系统,允许HES细胞的扩增和维护。如果要将基础干细胞研究成功地转化为临床,这是一个需要解决的重要目标。在需要大量未分化的人类ES细胞的情况下,这种扩增对于未来的应用至关重要,例如,这些开发的应用可能使大量的未分化干细胞的培养成为可能,这些干细胞随后可以分化为神经细胞、肝细胞等,并用于替代慢性病患者受损的细胞和组织。这种基于细胞的策略为许多此类疾病的患者带来了真正的希望,这里提出的研究在中长期可能会有真正的好处。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three-dimensional culture systems for the expansion of pluripotent embryonic stem cells.
- DOI:10.1002/bit.22850
- 发表时间:2010-11-01
- 期刊:
- 影响因子:3.8
- 作者:Storm, Michael P.;Orchard, Craig B.;Bone, Heather K.;Chaudhuri, Julian B.;Welham, Melanie J.
- 通讯作者:Welham, Melanie J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melanie Welham其他文献
1. Opportunities for bioscience research in the ‘new normal’
- DOI:
10.1016/j.anscip.2021.03.002 - 发表时间:
2021-04-01 - 期刊:
- 影响因子:
- 作者:
Melanie Welham - 通讯作者:
Melanie Welham
17-P001 Bmp4 promotes differentiation of the first vertebrate epithelium
- DOI:
10.1016/j.mod.2009.06.722 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Jun Wei;Yolanda Sanchez Ripoll;Melanie Welham;Andrew Chalmers - 通讯作者:
Andrew Chalmers
Melanie Welham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melanie Welham', 18)}}的其他基金
Strategies for the development and maturation of functional hepatocytes from hES cells
hES 细胞发育和成熟功能性肝细胞的策略
- 批准号:
MR/J006793/1 - 财政年份:2012
- 资助金额:
$ 28.9万 - 项目类别:
Research Grant
Regulation of embryonic stem cell self-renewal by the Zscan4 family of Zinc finger proteins
锌指蛋白 Zscan4 家族对胚胎干细胞自我更新的调节
- 批准号:
G0801108/1 - 财政年份:2009
- 资助金额:
$ 28.9万 - 项目类别:
Research Grant
相似国自然基金
Dynamic Credit Rating with Feedback Effects
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
静动态损伤问题的基面力元法及其在再生混凝土材料细观损伤分析中的应用
- 批准号:11172015
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
美洲大蠊药材养殖及加工过程中化学成分动态变化与生物活性的相关性研究
- 批准号:81060329
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
星系恒星与气体的动力学演化
- 批准号:11073025
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
- 批准号:20973136
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
生物膜式反应器内复杂热物理参数动态场分布的多尺度实时测量方法研究
- 批准号:50876120
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
大规模动态网络环境中协同组操作一致性维护算法的正确性证明及其验证的研究
- 批准号:60803118
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research and development of 3D object recognition and dynamic movement trajectory transmission for the visually impaired .
为视障人士研发3D物体识别及动态运动轨迹传输。
- 批准号:
22H03992 - 财政年份:2022
- 资助金额:
$ 28.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dynamic, Cellularized, 3D Printed Model Development for Aerosol Targeting in Pediatric JORRP Patients
用于儿科 JORRP 患者气溶胶靶向的动态、细胞化、3D 打印模型开发
- 批准号:
10317899 - 财政年份:2021
- 资助金额:
$ 28.9万 - 项目类别:
Dynamic, Cellularized, 3D Printed Model Development for Aerosol Targeting in Pediatric JORRP Patients
用于儿科 JORRP 患者气溶胶靶向的动态、细胞化、3D 打印模型开发
- 批准号:
10514527 - 财政年份:2021
- 资助金额:
$ 28.9万 - 项目类别:
Dynamic analysis of tissue development by 3D culture platform
利用3D培养平台进行组织发育动态分析
- 批准号:
21H01299 - 财政年份:2021
- 资助金额:
$ 28.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a multi-scale 3D dynamic measurement system using multiple lasers with different wavelengths
使用不同波长的多个激光器开发多尺度3D动态测量系统
- 批准号:
21K14175 - 财政年份:2021
- 资助金额:
$ 28.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a 3D gingival tissue model infected with periodontal pathogens and dynamic analysis of host invasion
牙周病原菌感染3D牙龈组织模型的建立及宿主侵袭动态分析
- 批准号:
20K12646 - 财政年份:2020
- 资助金额:
$ 28.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
- 批准号:
10245100 - 财政年份:2019
- 资助金额:
$ 28.9万 - 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
- 批准号:
10022131 - 财政年份:2019
- 资助金额:
$ 28.9万 - 项目类别:
RAPID/Collaborative Research: Dynamic Site Characterization Following Mw 7.1 Puebla Earthquake for Development of a Refined 3D Shallow Crust Velocity Model of the Mexico City Basin
RAPID/协作研究:普埃布拉 7.1 级地震后的动态场地特征,用于开发墨西哥城盆地的精细 3D 浅地壳速度模型
- 批准号:
1822484 - 财政年份:2018
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant
RAPID/Collaborative Research: Dynamic Site Characterization Following Mw 7.1 Puebla Earthquake for Development of a Refined 3D Shallow Crust Velocity Model of the Mexico City Basin
RAPID/协作研究:普埃布拉 7.1 级地震后的动态场地特征,用于开发墨西哥城盆地的精细 3D 浅地壳速度模型
- 批准号:
1822482 - 财政年份:2018
- 资助金额:
$ 28.9万 - 项目类别:
Standard Grant