Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
基本信息
- 批准号:10245100
- 负责人:
- 金额:$ 40.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D ImagingAddressAreaBiologicalBiological ProcessBiomedical ResearchBudgetsCell CommunicationCell ShapeCell physiologyCellsCellular StructuresCellular biologyCollectionColorComplexCrowdingDNA-Directed RNA PolymeraseDetectionDevelopmentDevelopmental BiologyDimensionsDisciplineEnvironmentFluorescenceGenetic TranscriptionImageImaging TechniquesImmunologyInterferometryLightLightingLobeMethodsMicroscopeMicroscopyMolecularMorphologic artifactsNeurosciencesNoiseOpticsOrganismPenetrationPhotobleachingPhotonsProceduresProcessProteinsResolutionSamplingScanningSchemeSideSignal TransductionSpecimenSpeedStructureSyncopeSystemTechniquesTechnologyThickThinnessTimeTissuesadaptive opticsbasecorrectional systemdata acquisitiondetection sensitivityexhaustexperimental studygenome editingimaging approachimaging capabilitiesimaging modalityimprovedinstrumentinstrumentationlensmicroscopic imagingmillisecondnon-invasive imagingnovel strategiesoptical imagingoptical latticesprototypereconstructionsingle moleculeslow potentialspatiotemporaltemporal measurementthree dimensional structure
项目摘要
ABSTRACT
Understanding how cell-cell communication and collective cell phenomena shape cell function and cell fate
decisions requires the ability to follow the detailed molecular processes as they take place inside live cells, with
the cell remaining embedded in its natural setting of the tissue and organism of origin. Although tremendous
progress has been made in imaging of single isolated cells, the requirements for probing crowded multi-cellular
systems with high spatio-temporal resolution and down to single-molecule sensitivity present an enormous
challenge for optical microscopy. Here we propose to tackle this challenge, using recent breakthroughs to i)
increase the capability of extracting high-resolution information from weak fluorescence signals – using 3D
interferometry; ii) image fragile/delicate biological samples using optimized configurations - based on selective-
plan illumination; iii) maintain/recover high resolution information through optically inhomogenous samples –
using adaptive optics. We hypothesize that successful synthesis of these three key technologies will create
new approaches that cross into previously uncharted realms of combined spatio-temporal resolution, detection
sensitivity, non-invasiveness and penetration depth. Based on these ideas we propose the following two
specific aims: (1) To develop multi-color volumetric 3D interferometric imaging, based on reliable, artifact-free
optical reconstructions, for increasing the ability to extract high-resolution information from weak fluorescence
signals; (2) To achieve non-invasive, background-free, long-term 4D imaging, at ~100nm near-isotropic 3D
spatial resolution, at millisecond acquisition times and over large and highly crowded (multi)cellular volumes.
The new techniques will significantly increase our abilities to interrogate dynamic biological processes with
molecular detail, in single isolated cells as well as in intact complex multi-cellular systems, thus having
widespread and immediate impact across biomedical disciplines.
摘要
了解细胞间通讯和集体细胞现象如何塑造细胞功能和细胞命运
决策需要能够跟踪详细的分子过程,因为它们发生在活细胞内,
该细胞保持嵌入在其组织和生物体的天然环境中。虽然巨大的
在单个孤立细胞的成像方面已经取得了进展,
具有高时空分辨率和低至单分子灵敏度的系统,
光学显微镜的挑战。在这里,我们建议应对这一挑战,利用最近的突破i)
提高从微弱荧光信号中提取高分辨率信息的能力-使用3D
干涉测量; ii)使用优化配置-基于选择性-
计划照明; iii)通过光学不均匀的样本维持/恢复高分辨率信息-
使用自适应光学。我们假设,这三项关键技术的成功综合将创造
新的方法,跨越到以前未知的领域,结合时空分辨率,检测
灵敏度、非侵入性和穿透深度。基于这些想法,我们提出以下两个建议:
具体目标:(1)开发多色体积三维干涉成像,基于可靠的,无伪影
光学重建,用于提高从弱荧光中提取高分辨率信息的能力
(2)实现无创、无背景、长期4D成像,在~ 100 nm近各向同性3D
空间分辨率,在毫秒级采集时间和在大的和高度拥挤的(多)细胞体积。
新技术将显著提高我们询问动态生物过程的能力,
分子细节,在单个分离的细胞以及在完整的复杂的多细胞系统中,因此具有
对生物医学学科产生广泛而直接的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandros Pertsinidis其他文献
Alexandros Pertsinidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandros Pertsinidis', 18)}}的其他基金
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10707375 - 财政年份:2022
- 资助金额:
$ 40.15万 - 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10510195 - 财政年份:2022
- 资助金额:
$ 40.15万 - 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
- 批准号:
10672880 - 财政年份:2022
- 资助金额:
$ 40.15万 - 项目类别:
Mechanisms of enhancer-promoter communication, genome organization and transcription control
增强子-启动子通讯、基因组组织和转录控制的机制
- 批准号:
10343329 - 财政年份:2022
- 资助金额:
$ 40.15万 - 项目类别:
Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
- 批准号:
9809804 - 财政年份:2019
- 资助金额:
$ 40.15万 - 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
- 批准号:
10022131 - 财政年份:2019
- 资助金额:
$ 40.15万 - 项目类别:
Single-molecule and super-resolution imaging methods with maximum photon efficiency, increased spatiotemporal resolution and high detection sensitivity in densely crowded environments
单分子和超分辨率成像方法,在密集拥挤的环境中具有最大光子效率、更高的时空分辨率和高检测灵敏度
- 批准号:
10005376 - 财政年份:2019
- 资助金额:
$ 40.15万 - 项目类别:
Understanding Gene Transcription from First-Principles: A single-molecule study
从第一原理理解基因转录:单分子研究
- 批准号:
8355484 - 财政年份:2012
- 资助金额:
$ 40.15万 - 项目类别:
相似海外基金
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 40.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 40.15万 - 项目类别:
Training Grant
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/X009262/1 - 财政年份:2023
- 资助金额:
$ 40.15万 - 项目类别:
Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
- 批准号:
23KJ1570 - 财政年份:2023
- 资助金额:
$ 40.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 40.15万 - 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
- 批准号:
BB/W020335/1 - 财政年份:2022
- 资助金额:
$ 40.15万 - 项目类别:
Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 40.15万 - 项目类别:
Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
- 批准号:
465594799 - 财政年份:2021
- 资助金额:
$ 40.15万 - 项目类别:
Major Research Instrumentation
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
- 批准号:
20K21899 - 财政年份:2020
- 资助金额:
$ 40.15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2020
- 资助金额:
$ 40.15万 - 项目类别:
Discovery Grants Program - Individual