Residue-specific contributions to the energetics of the catalytic cycle of PGK
残留物对 PGK 催化循环能量学的贡献
基本信息
- 批准号:BB/D01798X/1
- 负责人:
- 金额:$ 53.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biological molecules interact through multiple weak bonds, which define the specificity and the affinity of the interaction. One would expect that the total strength of this interaction would equal the sum of all the contributing weak bonds in isolation. However this is not the case, and interactions are often much weaker or stronger than expected (known as cooperativity). This often corresponds with the function of the molecules. The majority of functional biological molecules are proteins, the large macromolecules that are encoded by DNA. Proteins that bind to rare nutrients (biotin or iron) or highly unstable structures (rate-defining intermediates of chemical reactions) bind more tightly than expected, whereas other proteins bind and release abundant molecules quickly (for example the reactants and products of biochemical reactions, like glucose or lactate), but must still bind specifically. This is most striking in enzymes, which speed up biochemical reactions by binding to rate-defining intermediates of chemical reactions (transition states). They must also bind to the reactants and products of the reactions, which are very similar in chemistry to the transition state, but must be bound much more weakly. The focus of this study is how enzymes combine these two modes of binding in their reaction cycles, and how they use their intrinsic flexibility to do so. We wish to test whether structural tightening provides a mechanism of achieving this discrimination. NMR allows the measurement of the properties of individual atoms within large molecules, but there is a size limit to the size of molecules that can be studied. Over time this size limit is increasing as technology improves and is now at a stage where large enzymes like phosphoglycerate kinase (PGK) can be studied. This project will use this technology to determine the contributions that different atoms within this enzyme make to the binding of the transition state of the reaction it catalyses, using stable chemicals that resemble it (called transition state analogues). The conclusions should be broadly applicable to other enzymes. An understanding of this process is vital to the design inhibitors of enzymes for use as therapeutic agents (drugs) and to technologies that use enzymes out of their biological context, for example bioremediation. It will also help the theoretical understanding of how important biological molecules work.
生物分子通过多个弱键相互作用,这定义了相互作用的特异性和亲和力。人们会期望这种相互作用的总强度等于所有孤立的弱键的总和。然而,事实并非如此,相互作用往往比预期的要弱或强得多(称为协同性)。这通常与分子的功能相对应。大多数功能性生物分子是蛋白质,即由DNA编码的大分子。与稀有营养素(生物素或铁)或高度不稳定结构(化学反应的速率决定中间体)结合的蛋白质比预期的结合更紧密,而其他蛋白质结合并快速释放大量分子(例如生化反应的反应物和产物,如葡萄糖或乳酸),但仍然必须特异性结合。这在酶中最为显著,酶通过与化学反应的速率决定中间体(过渡态)结合来加速生化反应。它们还必须与反应物和反应产物结合,这些反应物和反应产物在化学上与过渡态非常相似,但结合强度要弱得多。本研究的重点是酶如何在其反应循环中联合收割机这两种结合模式,以及它们如何利用其固有的灵活性来实现这一目标。我们希望检验结构性紧缩是否提供了实现这种歧视的机制。NMR允许测量大分子中单个原子的性质,但可以研究的分子大小有大小限制。随着时间的推移,随着技术的进步,这种尺寸限制正在增加,现在正处于可以研究磷酸甘油酸激酶(PGK)等大型酶的阶段。该项目将使用这种技术来确定这种酶中不同原子对其催化反应的过渡态结合的贡献,使用类似于它的稳定化学物质(称为过渡态类似物)。这些结论对其他酶也具有广泛的适用性。理解这一过程对于设计用作治疗剂(药物)的酶抑制剂和使用酶的生物背景技术(例如生物修复)至关重要。它还将有助于从理论上理解重要的生物分子如何工作。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How to name atoms in phosphates, polyphosphates, their derivatives and mimics, and transition state analogues for enzyme-catalysed phosphoryl transfer reactions (IUPAC Recommendations 2016)
- DOI:10.1515/pac-2016-0202
- 发表时间:2017-05-01
- 期刊:
- 影响因子:1.8
- 作者:Blackburn, G. Michael;Cherfils, Jacqueline;Wittinghofer, Alfred
- 通讯作者:Wittinghofer, Alfred
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jon Waltho其他文献
Jon Waltho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jon Waltho', 18)}}的其他基金
The Control of Non-Chemical Steps in Enzyme Catalysis
酶催化中非化学步骤的控制
- 批准号:
BB/S007695/1 - 财政年份:2019
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
Enzyme catalysis of nucleophilic attack of anions by anions
酶催化阴离子亲核攻击阴离子
- 批准号:
BB/M021637/1 - 财政年份:2016
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
Dynamics, Gating and Opening in Enzyme Catalysis
酶催化的动力学、门控和开放
- 批准号:
BB/K016245/1 - 财政年份:2013
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
Understanding enzyme-catalysed phosphoryl transfer
了解酶催化的磷酰基转移
- 批准号:
BB/I002146/1 - 财政年份:2011
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
Atomic resolution experimental interrogation of hydride quantum tunnelling in enzyme reaction chemistry
酶反应化学中氢化物量子隧道效应的原子分辨率实验询问
- 批准号:
BB/H000844/1 - 财政年份:2010
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
The influence of metal fluorides on the structure and dynamics of phosphoryl transfer enzymes
金属氟化物对磷酰基转移酶结构和动力学的影响
- 批准号:
BB/E017541/1 - 财政年份:2007
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
相似国自然基金
新生儿坏死性小肠结肠炎中去泛素化酶USP15调控ILC3分化损伤肠道粘膜屏障的致病机制研究
- 批准号:82371711
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
花胶鱼类物种Species-specific PCR和Multiplex PCR鉴定体系研究
- 批准号:31902373
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Dravet综合征基因突变分析及突变来源研究
- 批准号:81171221
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
睾丸特异性新基因TSC29的表达调控机制及其功能研究
- 批准号:81170613
- 批准年份:2011
- 资助金额:54.0 万元
- 项目类别:面上项目
RNA结合蛋白CUG-BP1对于mRNA降解的调控机制研究
- 批准号:31000570
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
新生隐球菌减数分裂特异性基因ISC10的生理功能研究
- 批准号:30970130
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
寻找精神分裂症的调节性遗传变异
- 批准号:30870899
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
- 批准号:
10642619 - 财政年份:2023
- 资助金额:
$ 53.38万 - 项目类别:
Elucidating the contributions of c-di-GMP and PlzA to tick- and mammalian host-adaptation in Lyme disease spirochetes
阐明 c-di-GMP 和 PlzA 对莱姆病螺旋体蜱和哺乳动物宿主适应的贡献
- 批准号:
10739945 - 财政年份:2023
- 资助金额:
$ 53.38万 - 项目类别:
Determinants of Alzheimer's Disease in Atrial Fibrillation apart from Stroke: The NOMINATE Study
除中风之外的房颤中阿尔茨海默病的决定因素:提名研究
- 批准号:
10433238 - 财政年份:2022
- 资助金额:
$ 53.38万 - 项目类别:
Determinants of Alzheimer's Disease in Atrial Fibrillation apart from Stroke: The NOMINATE Study
除中风之外的房颤中阿尔茨海默病的决定因素:提名研究
- 批准号:
10561657 - 财政年份:2022
- 资助金额:
$ 53.38万 - 项目类别:
Dissection of Cell Type Specific Contributions to Motor Learning Circuits
细胞类型对运动学习电路的特定贡献的剖析
- 批准号:
10505229 - 财政年份:2022
- 资助金额:
$ 53.38万 - 项目类别:
Dissection of Cell Type Specific Contributions to Motor Learning Circuits
细胞类型对运动学习电路的特定贡献的剖析
- 批准号:
10665059 - 财政年份:2022
- 资助金额:
$ 53.38万 - 项目类别:
Multiethnic Validation of VCID biomarkers in South Texas
德克萨斯州南部 VCID 生物标志物的多种族验证
- 批准号:
10369339 - 财政年份:2021
- 资助金额:
$ 53.38万 - 项目类别:
Molecular Logic Sculpting Cell-Specific Contributions of Neurexin-1 at the Tripartite Synapse
分子逻辑塑造 Neurexin-1 对三联突触的细胞特异性贡献
- 批准号:
10224581 - 财政年份:2021
- 资助金额:
$ 53.38万 - 项目类别:
RESEARCH-PGR: Predicting Gene-Specific Functional Contributions to Maize Reproduction: A Machine-Learning Approach
RESEARCH-PGR:预测基因特异性对玉米繁殖的功能贡献:一种机器学习方法
- 批准号:
2041384 - 财政年份:2021
- 资助金额:
$ 53.38万 - 项目类别:
Continuing Grant
Exploring Neuronal Subtype-specific Mechanisms of Ethanol Dependence and Reward: Contributions of Voltage-gated Potassium Channels
探索乙醇依赖和奖励的神经元亚型特异性机制:电压门控钾通道的贡献
- 批准号:
10401948 - 财政年份:2021
- 资助金额:
$ 53.38万 - 项目类别: