Enzyme catalysis of nucleophilic attack of anions by anions
酶催化阴离子亲核攻击阴离子
基本信息
- 批准号:BB/M021637/1
- 负责人:
- 金额:$ 45.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present application aims to get to the heart of fundamental questions that are critical to developing our understanding of how enzymes work. Enzymes, which are normally proteins, control the rate at which almost all chemistry occurs in living systems. Understanding enzyme activity is a high priority - it is at the core of therapeutic intervention, industrial biotechnology, and synthetic biology. The controlled manipulation of enzyme activity is one of the key elements targeted in each of these areas of research. Enzyme activity has been studied for many decades and many paradigms have evolved but, very recently, tools have been developed that allow the testing of those paradigms with unprecedented levels of detail. We are now able to observe the structure, electronics and dynamics within enzymes at the level of individual atoms. A proper understanding of all of these elements and their interplay is crucial to manipulating enzyme activity, and with observation powers at this level of detail, many of traditional paradigms of enzymology are not surviving rigorous testing. In this study we will examine how enzymes handle chemistry between two entities with the same charge, how the enzyme is triggered to open and close, and how it avoids getting stuck in deep thermodynamic wells when dealing with high-energy reactions. These issues are fundamental to the activity of many enzymes and are not well understood. To achieve the study we will investigate the behaviour of an enzyme that moves phosphate groups between a carboxylate group and a phosphate group, and between two phosphate groups. Enzymes that move phosphate groups lie at the heart of every system in living organisms - in the storage, maintenance and expression of genetic information, in metabolism, communication, cell architecture, differentiation, and homeostasis. We will develop new models based on the behaviour an archetypal enzyme that delivers very high quality measurements, which can then be translated to other enzymes that are common targets in therapeutic, industrial biotechnology and synthetic biology programmes.
本申请旨在触及对发展我们对酶如何工作的理解至关重要的基本问题的核心。酶,通常是蛋白质,控制着生命系统中几乎所有化学反应的速率。了解酶的活性是一个高度优先事项-它是治疗干预,工业生物技术和合成生物学的核心。酶活性的受控操纵是这些研究领域中每个领域的关键目标之一。酶的活性已经研究了几十年,许多范式已经发展,但最近,已经开发了工具,允许测试这些范式与前所未有的细节水平。我们现在能够在单个原子的水平上观察酶的结构,电子和动力学。正确理解所有这些元素及其相互作用对于操纵酶活性至关重要,并且在这种细节水平上的观察能力,许多传统的酶学范式无法经受严格的测试。在这项研究中,我们将研究酶如何处理具有相同电荷的两个实体之间的化学反应,如何触发酶打开和关闭,以及如何避免在处理高能反应时陷入深层热力学威尔斯。这些问题对于许多酶的活性是基本的,并且还没有很好地理解。为了实现这项研究,我们将研究一种酶的行为,这种酶在羧酸基团和磷酸基团之间以及两个磷酸基团之间移动磷酸基团。移动磷酸基团的酶位于生物体中每个系统的核心-在遗传信息的存储,维护和表达,新陈代谢,通信,细胞结构,分化和稳态中。我们将开发基于行为的新模型,这种原型酶可以提供非常高质量的测量,然后可以将其转化为治疗,工业生物技术和合成生物学计划中的常见目标的其他酶。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regional conformational flexibility couples substrate specificity and scissile phosphate diester selectivity in human flap endonuclease 1.
- DOI:10.1093/nar/gky293
- 发表时间:2018-06-20
- 期刊:
- 影响因子:14.9
- 作者:Bennet IA;Finger LD;Baxter NJ;Ambrose B;Hounslow AM;Thompson MJ;Exell JC;Shahari NNBM;Craggs TD;Waltho JP;Grasby JA
- 通讯作者:Grasby JA
How to name atoms in phosphates, polyphosphates, their derivatives and mimics, and transition state analogues for enzyme-catalysed phosphoryl transfer reactions (IUPAC Recommendations 2016)
- DOI:10.1515/pac-2016-0202
- 发表时间:2017-05-01
- 期刊:
- 影响因子:1.8
- 作者:Blackburn, G. Michael;Cherfils, Jacqueline;Wittinghofer, Alfred
- 通讯作者:Wittinghofer, Alfred
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jon Waltho其他文献
Jon Waltho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jon Waltho', 18)}}的其他基金
The Control of Non-Chemical Steps in Enzyme Catalysis
酶催化中非化学步骤的控制
- 批准号:
BB/S007695/1 - 财政年份:2019
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
Dynamics, Gating and Opening in Enzyme Catalysis
酶催化的动力学、门控和开放
- 批准号:
BB/K016245/1 - 财政年份:2013
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
Understanding enzyme-catalysed phosphoryl transfer
了解酶催化的磷酰基转移
- 批准号:
BB/I002146/1 - 财政年份:2011
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
Atomic resolution experimental interrogation of hydride quantum tunnelling in enzyme reaction chemistry
酶反应化学中氢化物量子隧道效应的原子分辨率实验询问
- 批准号:
BB/H000844/1 - 财政年份:2010
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
The influence of metal fluorides on the structure and dynamics of phosphoryl transfer enzymes
金属氟化物对磷酰基转移酶结构和动力学的影响
- 批准号:
BB/E017541/1 - 财政年份:2007
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
Residue-specific contributions to the energetics of the catalytic cycle of PGK
残留物对 PGK 催化循环能量学的贡献
- 批准号:
BB/D01798X/1 - 财政年份:2006
- 资助金额:
$ 45.53万 - 项目类别:
Research Grant
相似国自然基金
Pt/碲化物亲氧性调控助力醇类燃料电氧化的研究
- 批准号:22302168
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于钯催化烯丙基取代反应的不对称串联反应研究
- 批准号:21672142
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
一类新型可调的手性膦配体的合成及其在不对称Suzuki-Miyaura反应中的应用
- 批准号:20972196
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
钌苯络合物的配位立体化学及其氢转移催化性能研究
- 批准号:20773098
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
不对称Tandem catalysis 合成手性仲醇
- 批准号:20643008
- 批准年份:2006
- 资助金额:8.0 万元
- 项目类别:专项基金项目
非水相微波辐射-酶耦合催化(MIECC)的作用机制
- 批准号:20476038
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Enantioselective Thioetherification of Olefins Guided by CuH Catalysis
CuH 催化下烯烃的对映选择性硫醚化
- 批准号:
10464729 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别:
Metal-Catalyzed Nucleophilic Substitution Reactions of Alkyl Electrophiles
金属催化烷基亲电试剂的亲核取代反应
- 批准号:
10625376 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别:
Enantioselective Thioetherification of Olefins Guided by CuH Catalysis
CuH 催化下烯烃的对映选择性硫醚化
- 批准号:
10616488 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别:
Developing Asymmetric Gold Redox Catalysis for Challenging Chemical Transformations
开发不对称金氧化还原催化来应对具有挑战性的化学转化
- 批准号:
10686074 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别:
Metal-Catalyzed Nucleophilic Substitution Reactions of Alkyl Electrophiles
金属催化烷基亲电试剂的亲核取代反应
- 批准号:
10406704 - 财政年份:2022
- 资助金额:
$ 45.53万 - 项目类别:
Innovative catalysis enabled by nucleophilic activation of silanes
硅烷亲核活化实现创新催化
- 批准号:
21H01953 - 财政年份:2021
- 资助金额:
$ 45.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploring the Nature of Nucleophilic Aluminum: Bond Activation and Catalysis
探索亲核铝的性质:键活化和催化
- 批准号:
532873-2019 - 财政年份:2020
- 资助金额:
$ 45.53万 - 项目类别:
Postdoctoral Fellowships
Asymmetric Nucleophilic Aromatic Substitution Enabled by Hydrogen-Bonding Catalysis
氢键催化实现不对称亲核芳香取代
- 批准号:
9907565 - 财政年份:2020
- 资助金额:
$ 45.53万 - 项目类别:
Asymmetric Nucleophilic Aromatic Substitution Enabled by Hydrogen-Bonding Catalysis
氢键催化实现不对称亲核芳香取代
- 批准号:
10746493 - 财政年份:2020
- 资助金额:
$ 45.53万 - 项目类别:
Asymmetric Nucleophilic Aromatic Substitution Enabled by Hydrogen-Bonding Catalysis
氢键催化实现不对称亲核芳香取代
- 批准号:
10311063 - 财政年份:2020
- 资助金额:
$ 45.53万 - 项目类别: