Understanding enzyme-catalysed phosphoryl transfer

了解酶催化的磷酰基转移

基本信息

  • 批准号:
    BB/I002146/1
  • 负责人:
  • 金额:
    $ 59.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the most remarkable features of the chemistry of living organisms is the evolutionary development of phosphate esters to provide on one hand the extremely stable backbone for biopolymers that encode genetic information, DNA and RNA, while on the other hand providing the temporal and transient regulation of protein activity, largely under the control of protein kinases and protein phosphatases. In the meantime, phosphate esters are also utilised for the generation, distribution, and application of energy throughout the living systems by the manipulation of anhydrides of phosphoric acid and its esters, notably adenosine triphosphate. The solution to the paradox between the remarkable chemical stability of phosphate mono- and di-esters and their facile manipulation lays in the catalytic power of so-called phosphoryl transfer enzymes to make and break P-O-C and P-O-P bonds rapidly, which gives rise to some of the largest enzymatic rate accelerations yet identified. Despite this central position for phosphoryl transfer enzymes in biological systems, the source of catalytic power and how it is regulated is understood only at a relatively rudimentary level. One of the principal reasons for this is that it is difficult to observe the enzymes in the fleeting moments of catalysis, since the lifetimes of the relevant species are so short. The most informative experimental approaches to unravelling this conundrum are where a chemical that provides a close mimic of the fleeting populated species, but which is stable for far more extended period, is inserted into the enzyme. We have discovered a new type of inorganic species that performs this role far better than any previously identified for phosphoryl transfer enzymes, whereby magnesium and fluoride combine in the active site of the enzyme to make an excellent mimic of a phosphate group being transferred. This exquisite trap of the enzyme, which catches it as if in the act of transferring a phosphate group, enables us to measure how the enzyme is able to impart the enormous stabilisation required to make phosphoryl transfer occur at a rate that is useful for biological systems. We will analyse the trapped enzyme using a combination of experimental and computational methods that we have also developed, in a synergistic and interdisciplinary research programme. The development of this understanding will enable us to guide the evolution of compounds that modulate the activity of phosphoryl transfer enzymes, which are targets for therapeutic and biotechnological intervention in a broad range of important processes from heart disease and cancer to crop protection. The work matches the stated aims of BBSRC in moving towards a more mathematical and physical understanding of biological processes.
活生物体化学最显着的特征之一是磷酸酯的进化发展,一方面为编码遗传信息、DNA和RNA的生物聚合物提供极其稳定的骨架,另一方面提供时间和短暂的调节蛋白质活性,主要受蛋白激酶和蛋白磷酸酶的控制。与此同时,磷酸酯也用于通过操纵磷酸及其酯的酸酐,特别是三磷酸腺苷,在整个生命系统中产生、分配和应用能量。磷酸单酯和磷酸二酯的显著化学稳定性与其容易操作之间的矛盾的解决方案在于所谓的磷酰基转移酶的催化能力,以快速形成和破坏P-O-C和P-O-P键,这引起了一些迄今为止确定的最大的酶促速率加速。尽管磷酰基转移酶在生物系统中处于中心地位,但催化能力的来源及其调节方式仅在相对初级的水平上被理解。其中一个主要原因是,由于相关物种的寿命很短,因此很难在催化的短暂时刻观察酶。解开这个难题的最有价值的实验方法是将一种化学物质插入酶中,这种化学物质提供了短暂的种群物种的近似模拟,但在更长的时间内是稳定的。我们已经发现了一种新型的无机物质,它比以前鉴定的任何磷酰基转移酶都能更好地发挥这一作用,镁和氟化物联合收割机在酶的活性部位结合,形成了一种极好的磷酸基团转移模拟物。酶的这种精巧的陷阱,就像在转移磷酸基团的过程中捕获它一样,使我们能够测量酶如何能够赋予使磷酰基转移以对生物系统有用的速率发生所需的巨大稳定性。我们将使用我们还开发的实验和计算方法相结合,在协同和跨学科的研究计划中分析捕获的酶。这种理解的发展将使我们能够指导调节磷酰基转移酶活性的化合物的演变,磷酰基转移酶是从心脏病和癌症到作物保护的广泛重要过程中的治疗和生物技术干预的目标。这项工作符合BBSRC的既定目标,即对生物过程进行更多的数学和物理理解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metal Fluorides: Tools for Structural and Computational Analysis of Phosphoryl Transfer Enzymes.
  • DOI:
    10.1007/s41061-017-0130-y
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jin Y;Molt RW Jr;Blackburn GM
  • 通讯作者:
    Blackburn GM
How to name atoms in phosphates, polyphosphates, their derivatives and mimics, and transition state analogues for enzyme-catalysed phosphoryl transfer reactions (IUPAC Recommendations 2016)
  • DOI:
    10.1515/pac-2016-0202
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Blackburn, G. Michael;Cherfils, Jacqueline;Wittinghofer, Alfred
  • 通讯作者:
    Wittinghofer, Alfred
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon Waltho其他文献

Jon Waltho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon Waltho', 18)}}的其他基金

The Control of Non-Chemical Steps in Enzyme Catalysis
酶催化中非化学步骤的控制
  • 批准号:
    BB/S007695/1
  • 财政年份:
    2019
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Research Grant
Enzyme catalysis of nucleophilic attack of anions by anions
酶催化阴离子亲核攻击阴离子
  • 批准号:
    BB/M021637/1
  • 财政年份:
    2016
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Research Grant
Dynamics, Gating and Opening in Enzyme Catalysis
酶催化的动力学、门控和开放
  • 批准号:
    BB/K016245/1
  • 财政年份:
    2013
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Research Grant
Atomic resolution experimental interrogation of hydride quantum tunnelling in enzyme reaction chemistry
酶反应化学中氢化物量子隧道效应的原子分辨率实验询问
  • 批准号:
    BB/H000844/1
  • 财政年份:
    2010
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Research Grant
The influence of metal fluorides on the structure and dynamics of phosphoryl transfer enzymes
金属氟化物对磷酰基转移酶结构和动力学的影响
  • 批准号:
    BB/E017541/1
  • 财政年份:
    2007
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Research Grant
Residue-specific contributions to the energetics of the catalytic cycle of PGK
残留物对 PGK 催化循环能量学的贡献
  • 批准号:
    BB/D01798X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Research Grant

相似国自然基金

酶响应的中性粒细胞外泌体载药体系在眼眶骨缺损修复中的作用及机制研究
  • 批准号:
    82371102
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PCBP1和PCBP2调控cGAS的相变和酶活的机制研究
  • 批准号:
    32370928
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
  • 批准号:
    82371738
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
木质纤维素高效水解多酶混合物(multi-enzyme cocktails)的高通量分析及其理性定制
  • 批准号:
    21176106
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Nrf2-ARE通路在脑缺血性卒中的作用及机制研究
  • 批准号:
    30700254
  • 批准年份:
    2007
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目
非水相微波辐射-酶耦合催化(MIECC)的作用机制
  • 批准号:
    20476038
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

International Centre for Enzyme Design (ICED)
国际酶设计中心 (ICED)
  • 批准号:
    EP/Z531157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Research Grant
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 59.16万
  • 项目类别:
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
  • 批准号:
    DE240100502
  • 财政年份:
    2024
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Discovery Early Career Researcher Award
Berberine bridge enzyme-like proteins as key virulence factors in plant pathogens
小檗碱桥酶样蛋白作为植物病原体的关键毒力因子
  • 批准号:
    BB/Y003977/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Research Grant
ERI: Degradation of Polyelectrolyte Complexes via Enzyme Addition
ERI:通过添加酶降解聚电解质复合物
  • 批准号:
    2347080
  • 财政年份:
    2024
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Standard Grant
Application of an innovative enzyme-based technology for production of gluten-safe bread
应用创新酶技术生产无麸质面包
  • 批准号:
    10110007
  • 财政年份:
    2024
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Launchpad
Berberine bridge enzyme-like proteins as key virulence factors in plant pathogens
小檗碱桥酶样蛋白作为植物病原体的关键毒力因子
  • 批准号:
    BB/Y003489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Research Grant
Development of Reversible Double-Layer Polymer Modification Technology to Break the Safety/Efficacy Trade-Off of Delivering Enzyme
开发可逆双层聚合物改性技术,打破酶递送安全性/有效性的权衡
  • 批准号:
    23K28429
  • 财政年份:
    2024
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structure and Function of Cyclodipeptide Oxidase-Like Enzyme Filaments
环二肽氧化酶样酶丝的结构和功能
  • 批准号:
    2400768
  • 财政年份:
    2024
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Standard Grant
Enzyme engineering to protect unstable metabolic intermediates in synthetic pathways
酶工程保护合成途径中不稳定的代谢中间体
  • 批准号:
    24K17829
  • 财政年份:
    2024
  • 资助金额:
    $ 59.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了