Atomic resolution experimental interrogation of hydride quantum tunnelling in enzyme reaction chemistry

酶反应化学中氢化物量子隧道效应的原子分辨率实验询问

基本信息

  • 批准号:
    BB/H000844/1
  • 负责人:
  • 金额:
    $ 52.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Enzymes are phenomenal catalysts accelerating reactions by as much as 10^21 compared with the rate of the non-catalyzed reaction. In all living things, these enzymes are specialized protein molecules that catalyze biochemical reactions for carrying out specific biological functions. Over a number of years, chemists and biochemists alike have attempted to harness this catalytic potential of enzyme systems to accelerate reactions that do not normally occur in Nature. This exploitation of enzymes as 'designer' catalysts requires in-depth and quantitative understanding of the physical chemistry of enzyme action. The drive to understand the origin of the power of enzyme catalysis has led to the development of quantitative, physical models for enzyme catalysis - the most recent incorporating quantum phenomena such as 'tunnelling' - to explain rate accelerations by enzyme enzymes. This has been augmented by the elucidation of atomic structures of biological catalysts using structural biology methods such as X-ray crystallography and NMR spectroscopy. This has defined the 'structure determines function' paradigm for enzymes and the notion that biological catalysis can be driven, for example, by complementary interactions between substrate molecules (or high energy states thereof) and the protein. Despite these advances, our understanding of biological catalysis is very incomplete, and we are unable to account for several orders of magnitude of the catalytic power of enzymes using current physical models. A more recent focus has been on the role of protein motions or dynamics in driving biological catalysis. This invokes a flexible enzyme catalyst that, when in complex with a substrate, can explore a myriad of different structural states over a variety of different timescales (sub picosecond to seconds). The catalytic power of enzymes is linked to the dynamical properties of the protein, but structural biology methods provide only 'static' depictions of the catalyst, or at best provide a time averaged ensemble of structures that may, or may not, be important in catalysis. The major challenge to the field and one that will open up more effective exploitation of enzyme catalysts in general, is to provide improved theory and analysis of the link between dynamical change and rate acceleration. The paradigm has thus progressed to one in which 'dynamics determines function'. In this application, we propose novel structural biology approaches that will provide atomic level insight into those high energy structural sub-states of a biological catalyst that are populated only transiently (millisecond through to < picosecond). This knowledge will underpin the development of more detailed insight into catalytic processes in enzyme systems and will form a platform for the emergence of more rigorous theory that will ultimately facilitate the improved exploitation of enzymes.
酶是显著的催化剂,与非催化反应相比,酶能使反应的速度加快10^21。在所有生物中,这些酶是特殊的蛋白质分子,催化生化反应以实现特定的生物功能。多年来,化学家和生物化学家都试图利用酶系统的这种催化潜力来加速自然界中通常不会发生的反应。这种酶作为“设计”催化剂的开发需要对酶作用的物理化学有深入和定量的了解。对酶催化能力起源的理解推动了酶催化的定量物理模型的发展——最近结合了量子现象,如“隧道效应”——来解释酶的速率加速。利用结构生物学方法,如x射线晶体学和核磁共振波谱学,对生物催化剂的原子结构进行了阐明,这一点得到了加强。这定义了酶的“结构决定功能”范式,以及生物催化可以被驱动的概念,例如,通过底物分子(或其高能态)与蛋白质之间的互补相互作用。尽管取得了这些进展,但我们对生物催化的理解还很不完整,而且我们无法用现有的物理模型来解释酶的催化能力的几个数量级。最近的一个焦点是蛋白质运动或动力学在驱动生物催化中的作用。这需要一种灵活的酶催化剂,当它与底物复合时,可以在各种不同的时间尺度(亚皮秒到秒)上探索无数不同的结构状态。酶的催化能力与蛋白质的动态特性有关,但结构生物学方法只能提供催化剂的“静态”描述,或者至多提供一个时间平均的结构集合,这些结构在催化中可能重要,也可能不重要。该领域面临的主要挑战,以及将为更有效地开发酶催化剂开辟道路的挑战,是对动态变化和速率加速之间的联系提供改进的理论和分析。因此,范式已经发展到“动态决定功能”的范式。在这个应用中,我们提出了新的结构生物学方法,将提供原子水平的洞察生物催化剂的高能量结构亚态,这些亚态只是短暂的(毫秒到<皮秒)。这些知识将支持对酶系统中催化过程更详细的见解的发展,并将形成一个平台,以出现更严格的理论,最终促进酶的改进开发。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simultaneously enhancing spectral resolution and sensitivity in heteronuclear correlation NMR spectroscopy.
  • DOI:
    10.1002/anie.201305709
  • 发表时间:
    2013-10-25
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Paudel, Liladhar;Adams, Ralph W.;Kiraly, Peter;Aguilar, Juan A.;Foroozandeh, Mohammadali;Cliff, Matthew J.;Nilsson, Mathias;Sandor, Peter;Waltho, Jonathan P.;Morris, Gareth A.
  • 通讯作者:
    Morris, Gareth A.
Isotopically labeled flavoenzymes and their uses in probing reaction mechanisms.
同位素标记的黄素酶及其在探测反应机制中的用途。
  • DOI:
    10.1016/bs.mie.2019.03.009
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iorgu AI
  • 通讯作者:
    Iorgu AI
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon Waltho其他文献

Jon Waltho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon Waltho', 18)}}的其他基金

The Control of Non-Chemical Steps in Enzyme Catalysis
酶催化中非化学步骤的控制
  • 批准号:
    BB/S007695/1
  • 财政年份:
    2019
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Research Grant
Enzyme catalysis of nucleophilic attack of anions by anions
酶催化阴离子亲核攻击阴离子
  • 批准号:
    BB/M021637/1
  • 财政年份:
    2016
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Research Grant
Dynamics, Gating and Opening in Enzyme Catalysis
酶催化的动力学、门控和开放
  • 批准号:
    BB/K016245/1
  • 财政年份:
    2013
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Research Grant
Understanding enzyme-catalysed phosphoryl transfer
了解酶催化的磷酰基转移
  • 批准号:
    BB/I002146/1
  • 财政年份:
    2011
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Research Grant
The influence of metal fluorides on the structure and dynamics of phosphoryl transfer enzymes
金属氟化物对磷酰基转移酶结构和动力学的影响
  • 批准号:
    BB/E017541/1
  • 财政年份:
    2007
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Research Grant
Residue-specific contributions to the energetics of the catalytic cycle of PGK
残留物对 PGK 催化循环能量学的贡献
  • 批准号:
    BB/D01798X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Research Grant

相似国自然基金

用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
发展双模态超分辨率全景成像技术,描绘自噬和迁移性胞吐过程中的细胞器互作网络
  • 批准号:
    92054301
  • 批准年份:
    2020
  • 资助金额:
    900.0 万元
  • 项目类别:
    重大研究计划
基于Resolution算法的交互时态逻辑自动验证机
  • 批准号:
    61303018
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
高计数率环境下MRPC特性研究
  • 批准号:
    10875120
  • 批准年份:
    2008
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Atomic Models of Nitrogen Fixation by Nitrogenase from CryoEM Structures
CryoEM 结构中固氮酶固氮的原子模型
  • 批准号:
    10313954
  • 财政年份:
    2021
  • 资助金额:
    $ 52.84万
  • 项目类别:
Atomic Resolution Characterization of Kindlin-2 Binding to Phosphatidylinositol Phosphatases in Lipid Bilayers by Solid-State NMR
通过固态 NMR 原子分辨率表征 Kindlin-2 与脂质双层中磷脂酰肌醇磷酸酶的结合
  • 批准号:
    10298124
  • 财政年份:
    2021
  • 资助金额:
    $ 52.84万
  • 项目类别:
Atomic Resolution Characterization of Kindlin-2 Binding to Phosphatidylinositol Phosphatases in Lipid Bilayers by Solid-State NMR
通过固态 NMR 原子分辨率表征 Kindlin-2 与脂质双层中磷脂酰肌醇磷酸酶的结合
  • 批准号:
    10654036
  • 财政年份:
    2021
  • 资助金额:
    $ 52.84万
  • 项目类别:
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
  • 批准号:
    10471928
  • 财政年份:
    2019
  • 资助金额:
    $ 52.84万
  • 项目类别:
Dynein-adaptor interaction mechanisms and malfunction at atomic resolution
原子分辨率下的动力蛋白-适配器相互作用机制和故障
  • 批准号:
    10224245
  • 财政年份:
    2019
  • 资助金额:
    $ 52.84万
  • 项目类别:
Dynein-adaptor interaction mechanisms and malfunction at atomic resolution
原子分辨率下的动力蛋白-适配器相互作用机制和故障
  • 批准号:
    10450161
  • 财政年份:
    2019
  • 资助金额:
    $ 52.84万
  • 项目类别:
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
  • 批准号:
    10667555
  • 财政年份:
    2019
  • 资助金额:
    $ 52.84万
  • 项目类别:
Atomic basis for chloride channel and transporter gating and selectivity
氯离子通道和转运蛋白门控和选择性的原子基础
  • 批准号:
    10319992
  • 财政年份:
    2019
  • 资助金额:
    $ 52.84万
  • 项目类别:
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
  • 批准号:
    10240704
  • 财政年份:
    2019
  • 资助金额:
    $ 52.84万
  • 项目类别:
Functional dynamics of glutamate transporters probed by high-speed atomic force microscopy with micro- to millisecond time resolution
通过微秒至毫秒时间分辨率的高速原子力显微镜探测谷氨酸转运蛋白的功能动力学
  • 批准号:
    10023957
  • 财政年份:
    2019
  • 资助金额:
    $ 52.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了