The Structural and Biochemical Bases of Circadian Oscillator Rhythmicity

昼夜节律振荡器节律的结构和生化基础

基本信息

  • 批准号:
    7677075
  • 负责人:
  • 金额:
    $ 27.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-04-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

The central oscillators of circadian clocks of organisms ranging from bacteria to humans synchronize biological activities with daily changes in sunlight and temperature, and have been shown to be important to health and survival. The central oscillator can be thought of as the heart of the circadian clock. What is the basis of the self -sustained rhythmicity, why are the periods ~24 hours, and why are the frequencies of circadian clocks much more resistant than the rates of most enzymes to changes in temperature? These questions are fundamental to all circadian central oscillators. Our long-term goal is to provide comprehensive answers to these questions for a central oscillator of a model system at biochemical and structural resolution. The central oscillator of the circadian clock in the cyanobacterium Synechococcus elongatus is comprised of only three proteins, KaiA, KaiB, and KaiC. A simple mixture consisting of the recombinant forms of these clock proteins and ATP in a test tube can reconstitute a self-sustained and temperature-compensated circadian rhythm of KaiC phosphorylation over several cycles. A single cycle has two halves: an ~12 hour autophosphorylation phase and an ~12 hour autodephosphorylation phase. Alternating interactions of KaiC with KaiA and KaiB, respectively, slowly swing KaiC between hyper- and hypophosphorylation over each day. This central oscillator-in-a-tube provides an outstanding opportunity to answer the questions posed above and to develop a biochemically and structurally detailed understanding of a biological timekeeper. Our specific aims are the following: 1. Determine how KaiA sets the ~12-hour autophosphorylation phase of the clock period. 2. Determine how KaiB mediates the ~12 hour autodephosphorylation phase of the clock period. 3. Determine whether autophosphorylation and autodephosphorylation of KaiC are cooperative processes. Here, we address biochemically and structurally the problems of how the long ~24 hour period of the circadian rhythm is established, how that period is buffered against changes in temperature, and how an oscillator reverses direction after 12 hours.
从细菌到人类的生物体生物钟的中心振荡器 使生物活动与阳光和温度的每日变化同步, 已经被证明对健康和生存很重要。中央振荡器可以是 被认为是生物钟的核心。自立的基础是什么 节奏性,为什么周期是24小时,为什么昼夜节律的频率 生物钟比大多数酶对温度变化的抵抗力更强? 这些问题是所有昼夜节律中心振荡器的基础。我们的长期目标 是提供全面的答案,这些问题的中心振荡器的 生物化学和结构分辨率的模型系统。 蓝细菌聚球藻生物钟的中心振荡器 细长体仅由三种蛋白质KaiA、KaiB和KaiC组成。简单混合物 由这些时钟蛋白和ATP的重组形式组成, 重建KaiC的自我维持和温度补偿的昼夜节律 磷酸化几个循环。一个周期有两个半:一个~12小时 自磷酸化阶段和约12小时的自去磷酸化阶段。交替 KaiC分别与KaiA和KaiB的相互作用,使KaiC在 高磷酸化和低磷酸化。 这个中央空调提供了一个绝佳的机会来回答 以上提出的问题,并制定一个生物化学和结构详细 了解生物计时器。我们的具体目标如下: 1.确定KaiA如何设置时钟的~12小时自磷酸化阶段 期 2.确定KaiB如何介导细胞凋亡的~12小时自动去磷酸化阶段。 时钟周期 3.确定KaiC的自身磷酸化和自身去磷酸化是否 合作进程。 在这里,我们解决生物化学和结构的问题,如何长~24小时 建立了昼夜节律的周期,该周期如何缓冲 温度的变化,以及振荡器如何在12小时后反转方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andy LiWang其他文献

Andy LiWang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andy LiWang', 18)}}的其他基金

Temperature and metabolic compensation mechanisms in a circadian clock system
生物钟系统中的温度和代谢补偿机制
  • 批准号:
    10544006
  • 财政年份:
    2022
  • 资助金额:
    $ 27.36万
  • 项目类别:
Temperature and metabolic compensation mechanisms in a circadian clock system
生物钟系统中的温度和代谢补偿机制
  • 批准号:
    10594727
  • 财政年份:
    2022
  • 资助金额:
    $ 27.36万
  • 项目类别:
Temperature and metabolic compensation mechanisms in a circadian clock system
生物钟系统中的温度和代谢补偿机制
  • 批准号:
    10797991
  • 财政年份:
    2022
  • 资助金额:
    $ 27.36万
  • 项目类别:
Temperature and metabolic compensation mechanisms in a circadian clock system
生物钟系统中的温度和代谢补偿机制
  • 批准号:
    10330682
  • 财政年份:
    2022
  • 资助金额:
    $ 27.36万
  • 项目类别:
The Linchpin that Joins the Circadian Oscillator to Clock Output
连接昼夜节律振荡器和时钟输出的关键
  • 批准号:
    10152597
  • 财政年份:
    2014
  • 资助金额:
    $ 27.36万
  • 项目类别:
The Linchpin that Joins the Circadian Oscillator to Clock Output
连接昼夜节律振荡器和时钟输出的关键
  • 批准号:
    8846618
  • 财政年份:
    2014
  • 资助金额:
    $ 27.36万
  • 项目类别:
Tertiary Structures of Circadian Clock Proteins by NMR
通过 NMR 观察昼夜节律钟蛋白的三级结构
  • 批准号:
    6719590
  • 财政年份:
    2002
  • 资助金额:
    $ 27.36万
  • 项目类别:
Tertiary Structures of Circadian Clock Proteins by NMR
通过 NMR 观察昼夜节律钟蛋白的三级结构
  • 批准号:
    7048609
  • 财政年份:
    2002
  • 资助金额:
    $ 27.36万
  • 项目类别:
Tertiary Structures of Circadian Clock Proteins by NMR
通过 NMR 观察昼夜节律钟蛋白的三级结构
  • 批准号:
    6868981
  • 财政年份:
    2002
  • 资助金额:
    $ 27.36万
  • 项目类别:
Tertiary Structures of Circadian Clock Proteins by NMR
通过 NMR 观察昼夜节律钟蛋白的三级结构
  • 批准号:
    7636704
  • 财政年份:
    2002
  • 资助金额:
    $ 27.36万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 27.36万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.36万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 27.36万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.36万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 27.36万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.36万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 27.36万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 27.36万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 27.36万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.36万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了