Nanoporous Gold: Extractive Substrate for High-Speed Ultrasensitive Bioassays
纳米多孔金:用于高速超灵敏生物测定的提取底物
基本信息
- 批准号:7661010
- 负责人:
- 金额:$ 23.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-15 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdsorptionAffinityAluminum OxideAntibodiesApplications GrantsArizonaBenchmarkingBindingBiologicalBiological AssayBiomedical EngineeringBioterrorismCaliberChemical EngineeringChemistryClassificationCommunicable DiseasesCulicidaeDataDetectionDigit structureDisease MarkerEffectivenessEngineeringFeline CalicivirusFoodGoatGoldGuidelinesHealthImmunoassayIndividualInfectionIngestionLabelLatex ParticlesLifeMeasurementMembraneModelingModificationMonitorNorovirusPathway interactionsPerformancePhasePhosphate BufferPlanetsPolymersPorosityPreparationPrincipal InvestigatorProceduresProteinsQa-1 AntigenReproducibilityResearch DesignRestRouteSafetySalineSamplingSchoolsScientistSerumSimulateSolidSpeedSurfaceSystemTechniquesTestingTicksTimeUniversitiesUrbanizationUtahViralViral ProteinsVirusWaterbasedesignfood surveillancenanoparticlepathogenpreventprogramspublic health relevanceresearch studytooltransmission processvector
项目摘要
DESCRIPTION (provided by applicant): Viruses claimed a significant component of the nearly 15 million lives lost to infectious diseases in 2002. Viral transmission can occur through several routes, including contact with infected individuals, ingestion of contaminated food and water, or contact with a vector like mosquitoes and ticks. These pathways, which may only need to transmit a few tens to hundreds of viruses to trigger an infection, will only become more prevalent as the globalization and urbanization of our planet accelerates. Thus, the ability to detect these and many other pathogens and disease markers rapidly and at very low levels stands as an extremely challenging proposition central to pubic health monitoring, food/water safety, and bioterrorism. While recent breakthroughs have led to the capability to detect viruses and other nanometric targets (e.g., proteins) at single and double digit levels after capture on a solid phase, the time required for sample/label incubation remains a bottleneck for transitioning to the surveillance/monitoring arena. This proposal seeks to redefine assay speed by exploring the potential of nanoporous gold (NPG) to function as a flow-through capture substrate for the efficient extraction of viruses and other comparably-sized pathogens and disease markers (e.g., antibodies), while at the same time accounting for other considerations needed for effective performance. The basis for this strategy rests with predicted improvements in the mass transfer rates, and thus the binding rates, for both the capture and labeling steps in heterogeneous assays that may be realized by flow through a nanoporous material. Models project potential increases in binding rates of more than two orders of magnitude with respect to the most effective of the known approaches. Two groups of experiments are therefore planned to assess this possibility using gold nanoparticle-based surface enhanced Raman scattering (SERS) measurements. In the first group of experiments, NPG membranes of varied pore size will be fabricated, derivatized, and tested as flow through extraction phases for the model virus feline calicivirus, FCV. FCV, which has ~30-nm diameter and is an effective norovirus simulant, will enable an in-depth, systematic assessment of extraction with respect to pore size. These studies will also test the effect of flow rate on capture and label efficiency, and collectively will provide a set of predictive rules for performance optimization in other potential applications. In addition, experiments will be conducted to minimize the impact of nonspecific adsorption by use of blocking agents, as well as potential complications from membrane clogging through the incorporation of sample prefilters. In the second group of experiments, these guidelines will be applied to assays for the detection of FCV in several matrices, including whole goat serum, tap water and groundwater. PUBLIC HEALTH RELEVANCE: This grant proposal seeks to redefine the speed of heterogeneous immunoassays by exploring the potential of nanoporous gold (NPG) membranes to function as flow through capture substrates for the rapid, efficient and selective concentration of nanometrically-sized pathogens (e.g., viruses and proteins). The basis for this strategy rests with: (1) the predicted improvements in the mass transfer rates, and thus the binding rates, for both the capture and labeling steps that may be realized by flow through a nanoporous material; and (2) the high sensitivity of a readout technique that uses modified gold nanoparticles and surface enhanced Raman scattering (SERS). To carry out the above tasks, we have assembled a team of scientists and engineers from the University of Utah Departments of Chemistry, Chemical Engineering, and Bioengineering, and from the Arizona State University School of Materials.
描述(由申请人提供):2002年,在因传染病而丧生的近1500万人中,病毒占了很大一部分。病毒传播可以通过几种途径发生,包括与受感染的个体接触,摄入受污染的食物和水,或与蚊子和蜱等媒介接触。这些途径可能只需要传播几十到几百个病毒就能引发感染,随着我们星球的全球化和城市化加速,它们只会变得更加普遍。因此,快速和低水平检测这些和许多其他病原体和疾病标志物的能力对于公共卫生监测、食品/水安全和生物恐怖主义来说是一个极具挑战性的命题。虽然最近的突破已经导致了检测病毒和其他纳米目标(例如,蛋白质)在固相上捕获后以个位数和两位数水平存在,样品/标记孵育所需的时间仍然是过渡到监视/监测竞技场的瓶颈。该提案试图通过探索纳米多孔金(NPG)作为流通捕获底物的潜力来重新定义测定速度,以有效提取病毒和其他相当大小的病原体和疾病标志物(例如,抗体),同时考虑有效性能所需的其他考虑。该策略的基础在于预测的质量传递速率的改进,因此结合速率,对于可以通过流过纳米多孔材料来实现的多相测定中的捕获和标记步骤。模型预测结合率的潜在增加超过两个数量级的最有效的已知方法。因此,两组实验计划使用基于金纳米颗粒的表面增强拉曼散射(Sers)测量来评估这种可能性。在第一组实验中,将制造、衍生化不同孔径的NPG膜,并将其作为模型病毒猫杯状病毒(FCV)的流过提取相进行检测。FCV直径约为30 nm,是一种有效的诺如病毒模拟物,将能够对孔径进行深入、系统的浸提评估。这些研究还将测试流速对捕获和标记效率的影响,并共同为其他潜在应用中的性能优化提供一组预测规则。此外,还将进行实验,以通过使用封闭剂最大限度地减少非特异性吸附的影响,以及通过加入样品预滤器最大限度地减少膜堵塞的潜在并发症。在第二组实验中,这些指南将应用于检测几种基质中FCV的测定,包括全山羊血清,自来水和地下水。公共卫生关系:该拨款提案旨在通过探索纳米多孔金(NPG)膜作为用于快速,有效和选择性浓缩纳米尺寸病原体(例如,病毒和蛋白质)。该策略的基础在于:(1)对于可以通过流过纳米多孔材料来实现的捕获和标记步骤,传质速率以及因此结合速率的预测改进;以及(2)使用改性金纳米颗粒和表面增强拉曼散射(Sers)的读出技术的高灵敏度。为了完成上述任务,我们组建了一个由来自犹他州大学化学系、化学工程系和生物工程系以及亚利桑那州州立大学材料学院的科学家和工程师组成的团队。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc D Porter其他文献
Marc D Porter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc D Porter', 18)}}的其他基金
Field-deployable platform for prognostic hepatic cancer screening in low-resource settings
可现场部署的平台,用于在资源匮乏的环境中进行预后性肝癌筛查
- 批准号:
9221887 - 财政年份:2017
- 资助金额:
$ 23.56万 - 项目类别:
Surface-enhanced Raman Spectroscopy Immunoassay for Detection of Category A Patho
用于检测 A 类病理的表面增强拉曼光谱免疫分析
- 批准号:
8695035 - 财政年份:2014
- 资助金额:
$ 23.56万 - 项目类别:
Surface-enhanced Raman Spectroscopy Immunoassay for Detection of Category A Patho
用于检测 A 类病理的表面增强拉曼光谱免疫分析
- 批准号:
9278001 - 财政年份:2014
- 资助金额:
$ 23.56万 - 项目类别:
Surface-enhanced Raman Spectroscopy Immunoassay for Detection of Category A Patho
用于检测 A 类病理的表面增强拉曼光谱免疫分析
- 批准号:
8850810 - 财政年份:2014
- 资助金额:
$ 23.56万 - 项目类别:
Surface-enhanced Raman Spectroscopy Immunoassay for Detection of Category A Patho
用于检测 A 类病理的表面增强拉曼光谱免疫分析
- 批准号:
9067315 - 财政年份:2014
- 资助金额:
$ 23.56万 - 项目类别:
Real-time Internal Calibration for Multiplexed Microarray Analysis
用于多重微阵列分析的实时内部校准
- 批准号:
8493750 - 财政年份:2013
- 资助金额:
$ 23.56万 - 项目类别:
Real-time Internal Calibration for Multiplexed Microarray Analysis
用于多重微阵列分析的实时内部校准
- 批准号:
8636020 - 财政年份:2013
- 资助金额:
$ 23.56万 - 项目类别:
Nanoporous Gold: Extractive Substrate for High-Speed Ultrasensitive Bioassays
纳米多孔金:用于高速超灵敏生物测定的提取底物
- 批准号:
7764726 - 财政年份:2009
- 资助金额:
$ 23.56万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 23.56万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 23.56万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 23.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 23.56万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 23.56万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 23.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 23.56万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 23.56万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 23.56万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 23.56万 - 项目类别:
Grant-in-Aid for Scientific Research (S)