Quantitative Cardiac PET/CT Imaging
定量心脏 PET/CT 成像
基本信息
- 批准号:7340109
- 负责人:
- 金额:$ 11.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-02-01 至 2012-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAngiographyArtsBiomedical EngineeringBlood flowBlurCardiacCardiologyCardiovascular PhysiologyCardiovascular systemClinicalClinical ProtocolsComplementCoronaryCoronary ArteriosclerosisCoronary heart diseaseCountDataDetectionDevelopmentDiagnosisDiagnosticDiscipline of Nuclear MedicineDiseaseDoseEnsureEnvironmentEventFacultyGenerationsImageImaging TechniquesIschemiaLeadLocalizedMeasurementMentorsMetabolismMethodsModelingMorphologic artifactsMotionMovementMyocardialMyocardial perfusionNeeds AssessmentNoiseNuclearPatientsPhasePhotonsPhysicsPositron-Emission TomographyProceduresPropertyProtocols documentationRadiology SpecialtyRateResearchResearch PersonnelResolutionRoleSolutionsSystemTechniquesTissue ViabilityTomography, Computed, ScannersTracerTrainingTraining ActivityUniversitiesWashingtonX-Ray Computed Tomographyattenuationbasebioimagingcareerdesignexperienceheart imagingheart motionimage processingimage reconstructionimprovedinsightmembermillisecondprogramsreconstructionrespiratorystatisticsuptake
项目摘要
DESCRIPTION (provided by applicant): Positron emission tomography (PET) combined with computed tomography (CT) in an integrated PET/CT scanner offers a single-study, noninvasive technique for the diagnosis of coronary artery disease. PET/CT cardiac scans can provide complementary functional and anatomic assessments: PET can quantitate myocardial perfusion and metabolism offering insight into small vessel disease and tissue viability; while contrast enhanced CT angiography provides information on coronary anatomy and atherosclerotic burden. PET offers the potential for truly quantitative measurements, but this quantitation is confounded by (1) misaligned CT-based attenuation correction (CTAC) factors and (2) the limited sensitivity of PET imaging. Respiratory motion, cardiac motion, and/or patient movement cause misalignment between the CTAC image and the PET image. To reduce this misalignment, Aim 1 develops and evaluates CT acquisition protocols tailored for attenuation correction in cardiac PET imaging to improve qualitative and quantitative accuracy. The limited sensitivity of PET imaging results in noisy dynamic studies and requires image acquisitions over multiple respiratory and cardiac cycles. Aim 2 investigates methods to reduce these degradations with reconstruction methods tailored for myocardial blood flow estimation in cardiac PET imaging. This research plan complements a comprehensive training plan to facilitate Dr. Alessio's development as a bioimaging researcher and junior faculty member in the Department of Radiology at the University of Washington. Dr. Alessio's previous research has focused on statistical image processing and tomographic reconstruction. The proposed training plan including mentoring, biomedical coursework, and scholarly activities will allow him to transition into a biomedical role and solve pressing clinical problems in cardiac imaging. The mentors for this proposal represent several decades of experience - James Caldwell and James Bassingthwaighte for cardiovascular function and modeling and Thomas Lewellen and Paul Kinahan for nuclear medicine physics, image generation, and clinical protocol optimization. The University of Washington, with its internationally recognized programs in cardiovascular bioengineering, nuclear cardiology, and diagnostic physics, is an ideal environment for the development of an independent research career combining state of the art imaging techniques with clinical needs for the assessment of coronary disease. This development will occur while contributing solutions to what are widely recognized as the most important challenges in cardiac PET/CT imaging.
描述(由申请人提供):正电子发射断层扫描(PET)与计算机断层扫描(CT)在集成的PET/CT扫描仪中提供了一种单一研究,非侵入性的冠状动脉疾病诊断技术。PET/CT心脏扫描可以提供补充的功能和解剖评估:PET可以量化心肌灌注和代谢,提供对小血管疾病和组织活力的洞察;而增强CT血管造影提供了冠状动脉解剖和动脉粥样硬化负担的信息。PET提供了真正定量测量的潜力,但这种定量测量受到以下因素的影响:(1)基于ct的衰减校正(CTAC)因素不对准;(2)PET成像的灵敏度有限。呼吸运动、心脏运动和/或患者运动导致CTAC图像和PET图像不一致。为了减少这种错位,Aim 1开发和评估了专门用于心脏PET成像衰减校正的CT采集方案,以提高定性和定量准确性。PET成像的有限灵敏度导致噪声动态研究,并且需要在多个呼吸和心脏周期中获取图像。目的2研究了在心脏PET成像中为心肌血流估计量身定制的重建方法来减少这些退化的方法。这项研究计划补充了一个全面的培训计划,以促进Alessio博士作为华盛顿大学放射学系生物成像研究员和初级教员的发展。阿莱西奥博士之前的研究主要集中在统计图像处理和层析成像重建。建议的培训计划包括指导、生物医学课程和学术活动,将使他能够过渡到生物医学的角色,并解决心脏成像方面紧迫的临床问题。该提案的导师代表了几十年的经验——James Caldwell和James bassingthwaight负责心血管功能和建模,Thomas Lewellen和Paul Kinahan负责核医学物理、图像生成和临床方案优化。华盛顿大学拥有国际公认的心血管生物工程、核心脏病学和诊断物理专业,是发展独立研究事业的理想环境,将最先进的成像技术与冠心病评估的临床需求相结合。这一发展将有助于解决被广泛认为是心脏PET/CT成像中最重要的挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam M Alessio其他文献
Adam M Alessio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam M Alessio', 18)}}的其他基金
Development of Artificial Intelligence (AI) based algorithms to classify the Pneumoconioses
开发基于人工智能 (AI) 的算法来对尘肺病进行分类
- 批准号:
10709621 - 财政年份:2022
- 资助金额:
$ 11.04万 - 项目类别:
Development of Artificial Intelligence (AI) based algorithms to classify the Pneumoconioses
开发基于人工智能(AI)的算法来对尘肺病进行分类
- 批准号:
10428946 - 财政年份:2022
- 资助金额:
$ 11.04万 - 项目类别:
Automatic Rib Fracture Detection in Pediatric Radiography to Identify Non-Accidental Trauma
儿科放射线照相中的自动肋骨骨折检测以识别非意外创伤
- 批准号:
9976563 - 财政年份:2019
- 资助金额:
$ 11.04万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 11.04万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 11.04万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 11.04万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 11.04万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 11.04万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 11.04万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 11.04万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 11.04万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 11.04万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 11.04万 - 项目类别:
Continuing Grant














{{item.name}}会员




