Low-dose Myocardial Perfusion Imaging by CT
CT 低剂量心肌灌注成像
基本信息
- 批准号:9039123
- 负责人:
- 金额:$ 38.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-17 至 2018-09-24
- 项目状态:已结题
- 来源:
- 关键词:4D ImagingAlgorithmsAnatomyBehaviorBlood flowCardiacCatheterizationClinicalComputer softwareConsensusContrast MediaCoronary heart diseaseCoupledDataDiagnosticDiseaseDoseGoalsHeartImageImage EnhancementImaging TechniquesIonizing radiationKineticsKnowledgeLow Dose RadiationMainstreamingManufacturer NameMeasuresMethodsModelingMyocardialMyocardial perfusionNoiseNuclearPatientsPerformancePerfusionPhysiologyPositioning AttributePositron-Emission TomographyProceduresProcessProtocols documentationRadiationResolutionSamplingScanningSchemeSeveritiesTechniquesTimeTubeVariantWorkX-Ray Computed Tomographyattenuationbaseblood flow measurementcardiovascular visualizationclinical applicationcontrast enhanceddata acquisitionimage reconstructionimprovedmathematical modelnovelnovel strategiesnovel therapeuticspatient safetyreconstructionresearch and developmentrestorationsimulationtool
项目摘要
DESCRIPTION (provided by applicant) The objective of this proposal is to develop clinically viable strategies for the quantitative estimation of myocardial blood flow (MBF) from dynamic computed tomography (CT) imaging with low radiation doses comparable to those received in common nuclear myocardial perfusion studies. Despite the proven clinical value of quantifying MBF (in ml/g/min), there are no widespread clinical methods to easily measure MBF in absolute units. Dynamic CT offers the potential to quantify flow, but the radiation dose imparted from these studies prohibits widespread acceptance. The specific aims of the proposal are to develop 1) optimal myocardial blood flow estimation methods, 2) low-dose dynamic CT acquisition strategies for MBF estimation, 3) unbiased data restoration algorithms and 4) image reconstruction methods based on trading off spatial resolution for noise reduction and constraining noise with a priori knowledge. These aims will be developed with simulations of dynamic contrast enhanced CT imaging and evaluated with patient exams. We hypothesize that accurate subendo- and subepi-cardial MBF estimates can be determined with low- dose dynamic CT through selection of acquisition strategies and judicious application of noise reduction strategies. This work proposes novel low-dose acquisition and data/image enhancement strategies to enable accurate quantitative estimates of blood flow in absolute units of ml/g/min. These methods will allow for substantial reductions in radiation dose, which is essential for patient safety, clinical application of dynamic CT for MBF measurement, and for other proven applications of dynamic CT. This work will position cardiac dynamic CT as a safe, easy, and widely available tool for quantitative MBF estimation, providing valuable clinical information for quantification of flow limiting disease, minimizing unnecessary catheterization procedures, informing therapy choices, and developing new therapies.
描述(由申请人提供) 本提案的目的是开发临床上可行的策略,用于通过动态计算机断层扫描(CT)成像定量估计心肌血流量(MBF),辐射剂量可与普通核心肌灌注研究中收到的辐射剂量相当。尽管量化 MBF(以 ml/g/min 为单位)的临床价值已得到证实,但尚无广泛的临床方法可以轻松测量绝对单位的 MBF。动态 CT 提供了量化流量的潜力,但这些研究产生的辐射剂量阻碍了广泛接受。该提案的具体目标是开发1)最佳心肌血流估计方法,2)用于MBF估计的低剂量动态CT采集策略,3)无偏数据恢复算法和4)基于空间分辨率权衡降噪和先验知识约束噪声的图像重建方法。这些目标将通过动态对比增强 CT 成像的模拟来制定,并通过患者检查进行评估。我们假设通过选择采集策略和明智地应用降噪策略,可以使用低剂量动态 CT 来确定准确的心内膜下和心外膜下 MBF 估计。这项工作提出了新颖的低剂量采集和数据/图像增强策略,能够以毫升/克/分钟的绝对单位准确定量估计血流量。这些方法将大大减少辐射剂量,这对于患者安全、动态 CT 测量 MBF 的临床应用以及动态 CT 的其他经过验证的应用至关重要。这项工作将心脏动态 CT 定位为一种安全、简单且广泛使用的定量 MBF 估计工具,为流量限制疾病的量化提供有价值的临床信息,最大限度地减少不必要的导管插入手术,为治疗选择提供信息,并开发新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam M Alessio其他文献
Adam M Alessio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam M Alessio', 18)}}的其他基金
Development of Artificial Intelligence (AI) based algorithms to classify the Pneumoconioses
开发基于人工智能(AI)的算法来对尘肺病进行分类
- 批准号:
10428946 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Development of Artificial Intelligence (AI) based algorithms to classify the Pneumoconioses
开发基于人工智能 (AI) 的算法来对尘肺病进行分类
- 批准号:
10709621 - 财政年份:2022
- 资助金额:
$ 38.64万 - 项目类别:
Automatic Rib Fracture Detection in Pediatric Radiography to Identify Non-Accidental Trauma
儿科放射线照相中的自动肋骨骨折检测以识别非意外创伤
- 批准号:
9976563 - 财政年份:2019
- 资助金额:
$ 38.64万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 38.64万 - 项目类别:
Continuing Grant














{{item.name}}会员




