Low-dose Myocardial Perfusion Imaging by CT

CT 低剂量心肌灌注成像

基本信息

  • 批准号:
    8650918
  • 负责人:
  • 金额:
    $ 40.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-17 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant) The objective of this proposal is to develop clinically viable strategies for the quantitative estimation of myocardial blood flow (MBF) from dynamic computed tomography (CT) imaging with low radiation doses comparable to those received in common nuclear myocardial perfusion studies. Despite the proven clinical value of quantifying MBF (in ml/g/min), there are no widespread clinical methods to easily measure MBF in absolute units. Dynamic CT offers the potential to quantify flow, but the radiation dose imparted from these studies prohibits widespread acceptance. The specific aims of the proposal are to develop 1) optimal myocardial blood flow estimation methods, 2) low-dose dynamic CT acquisition strategies for MBF estimation, 3) unbiased data restoration algorithms and 4) image reconstruction methods based on trading off spatial resolution for noise reduction and constraining noise with a priori knowledge. These aims will be developed with simulations of dynamic contrast enhanced CT imaging and evaluated with patient exams. We hypothesize that accurate subendo- and subepi-cardial MBF estimates can be determined with low- dose dynamic CT through selection of acquisition strategies and judicious application of noise reduction strategies. This work proposes novel low-dose acquisition and data/image enhancement strategies to enable accurate quantitative estimates of blood flow in absolute units of ml/g/min. These methods will allow for substantial reductions in radiation dose, which is essential for patient safety, clinical application of dynamic CT for MBF measurement, and for other proven applications of dynamic CT. This work will position cardiac dynamic CT as a safe, easy, and widely available tool for quantitative MBF estimation, providing valuable clinical information for quantification of flow limiting disease, minimizing unnecessary catheterization procedures, informing therapy choices, and developing new therapies.
描述(申请人提供)本建议的目标是开发临床上可行的策略,从动态计算机断层扫描(CT)成像中定量估计心肌血流量(MBF),其低辐射剂量可与普通核心肌灌注研究中的方法相媲美。尽管定量MBF(以毫升/克/分钟为单位)的临床价值已被证明,但目前还没有广泛的临床方法可以方便地以绝对单位来测量MBF。动态CT提供了量化血流的可能性,但这些研究提供的辐射剂量阻碍了人们的广泛接受。该方案的具体目标是:1)最佳的心肌血流量估计方法,2)用于MBF估计的低剂量动态CT采集策略,3)无偏数据恢复算法,4)基于空间分辨率的图像重建方法,以降低噪声并利用先验知识抑制噪声。这些目标将通过动态增强CT成像的模拟来开发,并通过患者检查进行评估。我们假设,通过选择采集策略和合理应用降噪策略,低剂量动态CT可以确定心内膜下和心下膜下MBF的准确估计值。这项工作提出了新的低剂量采集和数据/图像增强策略,以实现以毫升/克/分钟为绝对单位的准确定量血流量估计。这些方法将允许大幅减少辐射剂量,这对于患者的安全、用于MBF测量的动态CT的临床应用以及动态CT的其他经证实的应用都是至关重要的。这项工作将把心脏动态CT定位为一种安全、容易和广泛可用的定量MBF评估工具,为血流限制疾病的量化提供有价值的临床信息,最大限度地减少不必要的导尿术,告知治疗选择,并开发新的治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam M Alessio其他文献

Adam M Alessio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam M Alessio', 18)}}的其他基金

Development of Artificial Intelligence (AI) based algorithms to classify the Pneumoconioses
开发基于人工智能 (AI) 的算法来对尘肺病进行分类
  • 批准号:
    10709621
  • 财政年份:
    2022
  • 资助金额:
    $ 40.74万
  • 项目类别:
Development of Artificial Intelligence (AI) based algorithms to classify the Pneumoconioses
开发基于人工智能(AI)的算法来对尘肺病进行分类
  • 批准号:
    10428946
  • 财政年份:
    2022
  • 资助金额:
    $ 40.74万
  • 项目类别:
Automatic Rib Fracture Detection in Pediatric Radiography to Identify Non-Accidental Trauma
儿科放射线照相中的自动肋骨骨折检测以识别非意外创伤
  • 批准号:
    9976563
  • 财政年份:
    2019
  • 资助金额:
    $ 40.74万
  • 项目类别:
IEEE Medical Imaging Conference
IEEE 医学影像会议
  • 批准号:
    8910150
  • 财政年份:
    2015
  • 资助金额:
    $ 40.74万
  • 项目类别:
Low-dose Myocardial Perfusion Imaging by CT
CT 低剂量心肌灌注成像
  • 批准号:
    9039123
  • 财政年份:
    2012
  • 资助金额:
    $ 40.74万
  • 项目类别:
Low-dose Myocardial Perfusion Imaging by CT
CT 低剂量心肌灌注成像
  • 批准号:
    8460469
  • 财政年份:
    2012
  • 资助金额:
    $ 40.74万
  • 项目类别:
Low-dose Myocardial Perfusion Imaging by CT
CT 低剂量心肌灌注成像
  • 批准号:
    8290709
  • 财政年份:
    2012
  • 资助金额:
    $ 40.74万
  • 项目类别:
Quantitative Cardiac PET/CT Imaging
定量心脏 PET/CT 成像
  • 批准号:
    7340109
  • 财政年份:
    2007
  • 资助金额:
    $ 40.74万
  • 项目类别:
Quantitative Cardiac PET/CT Imaging
定量心脏 PET/CT 成像
  • 批准号:
    7578264
  • 财政年份:
    2007
  • 资助金额:
    $ 40.74万
  • 项目类别:
Quantitative Cardiac PET/CT Imaging
定量心脏 PET/CT 成像
  • 批准号:
    7185215
  • 财政年份:
    2007
  • 资助金额:
    $ 40.74万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 40.74万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.74万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.74万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 40.74万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.74万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 40.74万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 40.74万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 40.74万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 40.74万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.74万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了