Development of Artificial Intelligence (AI) based algorithms to classify the Pneumoconioses

开发基于人工智能(AI)的算法来对尘肺病进行分类

基本信息

  • 批准号:
    10428946
  • 负责人:
  • 金额:
    $ 21.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-30 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary Pneumoconiosis is a major occupational lung disease. Medical screening programs of workers exposed to asbestos, coal and silica and the compensation program for Black Lung Benefits require the use of the International Labor Organization (ILO) guidelines to classify radiographs for pneumoconiosis. NIOSH has developed a certification program to standardize the classification. Despite the use of certified B readers in screening and compensation programs, the small number of certified B readers, inter- and intra-reader variability, and potential financial conflict of interest have remained important challenges. There is a pressing need for a system to improve the objective and consistent classification of the pneumoconioses. Artificial intelligence (AI)- based models have demonstrated value for other lung diseases such as lung lesions, edema, and pneumonia. Our study aims to develop AI-based models to assist in the classification of radiographs for the pneumoconioses according to the ILO guidelines. Aim 1 will curate a novel set of expert classified chest radiographs with and without pneumoconiosis for training AI models. Aim 2 will develop machine learned methods including pre- trained Convolutional Neural Network (CNN) methods and hybrid CNN methods combined with handpicked features to distinguish parenchymal abnormalities and pleural abnormalities from normal radiographs. Aim 3 will further classify pneumoconiosis radiographs based on the ILO classification guideline by four major categories of small opacities; affected zones of the lung and shape; three sizes of large opacities and three subtypes of pleural abnormalities. In this aim, Deep Learning (DL) algorithms including Bayesian deep learning and Category-wise residual attention learning (CRAL) algorithm will be developed for uncertainty estimation and higher prediction accuracy in multi-class and multi-label classification problem. Our project will be the first study in the US to develop AI algorithms to classify pneumoconiosis based on the ILO guidelines. Particular attention in algorithm development will be given to the classification of borderline radiographs (i.e. profusion, 0/1 vs. 1/0) with estimated uncertainties. The AI algorithms developed in this study will be tested using a new set of radiographs with expectation of classifying pneumoconiosis based on ILO guideline with high accuracy especially for individuals with an early stage of pneumoconiosis. The project aligns with the NIOSH Research to Practice (r2p) approach, as the results of the proposed algorithms will be shared with NIOSH for dissemination to B readers. Computer-aided algorithms developed in this study will provide an objective and consistent classification that will assist in addressing the problems of small number of certified B readers, inter- and intra- reader variability, and potential financial conflict of interest.
项目摘要 尘肺病是一种主要的职业性肺病。接触有害物质的工人的健康检查计划 石棉、煤和硅石以及黑肺福利的补偿计划要求使用 国际劳工组织(ILO)尘肺病X线片分类指南。NIOSH已经 制定了一个认证程序,以标准化分类。尽管使用认证的B读者在 筛选和补偿计划,认证的B读者数量少,读者间和读者内的可变性, 以及潜在的财务利益冲突仍然是重要的挑战。目前迫切需要一个 系统,以改善肺尘埃沉病的客观和一致的分类。人工智能(AI)- 基于的模型已经证明了对其他肺部疾病如肺部病变、水肿和肺炎的价值。我们 这项研究旨在开发基于人工智能的模型,以帮助对尘肺病的X光片进行分类 根据国际劳工组织的指导方针。目标1将策划一套新颖的专家分类胸片, 没有尘肺病的人来训练人工智能模型。Aim 2将开发机器学习方法,包括预 训练卷积神经网络(CNN)方法和混合CNN方法结合手工挑选 特征以区分实质异常和胸膜异常与正常X线片。目标3将 根据国际劳工组织的分类指引,将肺尘埃沉着病X光片进一步分为四个主要类别 肺的受累区域和形状;三种大小的大阴影和三种胸膜炎亚型 异常在这个目标中,深度学习(DL)算法包括贝叶斯深度学习和类别智能 提出了一种用于不确定性估计和更高预测的剩余注意力学习算法 在多类和多标签分类问题的准确性。 我们的项目将是美国第一个开发人工智能算法的研究, 国际劳工组织的指导方针。在算法开发中,将特别注意以下分类: 具有估计不确定性的边界射线照片(即,丰富度,0/1 vs. 1/0)。人工智能算法开发于 这项研究将使用一组新的X光片进行测试,期望根据以下因素对尘肺进行分类: 国际劳工组织指南,特别是对早期尘肺患者的准确性高。项目 与NIOSH研究实践(r2 p)方法一致,因为所提出的算法的结果将是 与NIOSH共享以传播给B读者。本研究开发的计算机辅助算法将 提供一个客观和一致的分类,这将有助于解决少数问题, 认证的B读者,读者之间和读者内部的差异,以及潜在的财务利益冲突。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam M Alessio其他文献

Adam M Alessio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam M Alessio', 18)}}的其他基金

Development of Artificial Intelligence (AI) based algorithms to classify the Pneumoconioses
开发基于人工智能 (AI) 的算法来对尘肺病进行分类
  • 批准号:
    10709621
  • 财政年份:
    2022
  • 资助金额:
    $ 21.7万
  • 项目类别:
Automatic Rib Fracture Detection in Pediatric Radiography to Identify Non-Accidental Trauma
儿科放射线照相中的自动肋骨骨折检测以识别非意外创伤
  • 批准号:
    9976563
  • 财政年份:
    2019
  • 资助金额:
    $ 21.7万
  • 项目类别:
IEEE Medical Imaging Conference
IEEE 医学影像会议
  • 批准号:
    8910150
  • 财政年份:
    2015
  • 资助金额:
    $ 21.7万
  • 项目类别:
Low-dose Myocardial Perfusion Imaging by CT
CT 低剂量心肌灌注成像
  • 批准号:
    9039123
  • 财政年份:
    2012
  • 资助金额:
    $ 21.7万
  • 项目类别:
Low-dose Myocardial Perfusion Imaging by CT
CT 低剂量心肌灌注成像
  • 批准号:
    8650918
  • 财政年份:
    2012
  • 资助金额:
    $ 21.7万
  • 项目类别:
Low-dose Myocardial Perfusion Imaging by CT
CT 低剂量心肌灌注成像
  • 批准号:
    8460469
  • 财政年份:
    2012
  • 资助金额:
    $ 21.7万
  • 项目类别:
Low-dose Myocardial Perfusion Imaging by CT
CT 低剂量心肌灌注成像
  • 批准号:
    8290709
  • 财政年份:
    2012
  • 资助金额:
    $ 21.7万
  • 项目类别:
Quantitative Cardiac PET/CT Imaging
定量心脏 PET/CT 成像
  • 批准号:
    7340109
  • 财政年份:
    2007
  • 资助金额:
    $ 21.7万
  • 项目类别:
Quantitative Cardiac PET/CT Imaging
定量心脏 PET/CT 成像
  • 批准号:
    7578264
  • 财政年份:
    2007
  • 资助金额:
    $ 21.7万
  • 项目类别:
Quantitative Cardiac PET/CT Imaging
定量心脏 PET/CT 成像
  • 批准号:
    8011725
  • 财政年份:
    2007
  • 资助金额:
    $ 21.7万
  • 项目类别:

相似海外基金

Enabling The Development And Application Of Artificial Intelligence In The NHS
推动人工智能在 NHS 中的开发和应用
  • 批准号:
    MR/Y011651/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.7万
  • 项目类别:
    Fellowship
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
  • 批准号:
    2329858
  • 财政年份:
    2023
  • 资助金额:
    $ 21.7万
  • 项目类别:
    Continuing Grant
Development of next generation monitoring system for pediatric ventricular assist devices by artificial intelligence
利用人工智能开发下一代儿科心室辅助装置监测系统
  • 批准号:
    23K11892
  • 财政年份:
    2023
  • 资助金额:
    $ 21.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Development of novel artificial intelligence (AI)-enabled, non-invasive, heart attack diagnostics
SBIR 第一阶段:开发新型人工智能 (AI) 支持的非侵入性心脏病诊断
  • 批准号:
    2208248
  • 财政年份:
    2023
  • 资助金额:
    $ 21.7万
  • 项目类别:
    Standard Grant
Monitoring and Evaluation of Sustainable Development Goals using Earth Observation and Artificial Intelligence in Rural Africa
利用地球观测和人工智能在非洲农村监测和评估可持续发展目标
  • 批准号:
    2830853
  • 财政年份:
    2023
  • 资助金额:
    $ 21.7万
  • 项目类别:
    Studentship
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 21.7万
  • 项目类别:
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
  • 批准号:
    2409577
  • 财政年份:
    2023
  • 资助金额:
    $ 21.7万
  • 项目类别:
    Continuing Grant
I-Corps: A Framework for Streamlining the Development and Deployment of Generative Artificial Intelligence (AI) Models on Enterprise Data
I-Corps:简化企业数据生成人工智能 (AI) 模型的开发和部署的框架
  • 批准号:
    2335828
  • 财政年份:
    2023
  • 资助金额:
    $ 21.7万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
  • 批准号:
    2326146
  • 财政年份:
    2023
  • 资助金额:
    $ 21.7万
  • 项目类别:
    Standard Grant
Development, multi-ancestry international validation, algorithmic audit, and prospective silent trial evaluation of PRISM - A globally accessible, patient-oriented artificial intelligence-based model to predict the presence of clinically significant prost
PRISM 的开发、多祖先国际验证、算法审核和前瞻性静默试验评估 - 一种全球可访问、面向患者的基于人工智能的模型,用于预测具有临床意义的前列腺的存在
  • 批准号:
    479908
  • 财政年份:
    2023
  • 资助金额:
    $ 21.7万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了