Delta3D; Bench top assays for the rapid detection of protein 3D structural changes
Delta3D;
基本信息
- 批准号:BB/F005768/1
- 负责人:
- 金额:$ 46.32万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Pharmaceuticals were once just small molecules such as aspirin and penicillin. These contain 21 and 42 atoms respectively and their structure is determined by the rigid bonds between each atom. Their purity is easily measured and any chemical changes are detected by established methods and their production is straight forward. Currently, a new generation of biopharmaceuticals is emerging which use large molecules such as those found in the body e.g. proteins, to selectively treat a range of disorders. One of the first biopharmaceuticals was insulin, from animal pancreas which since the 1920's has treated forms of diabetes caused by the patients' inability to make insulin. No small molecule can do what insulin does and now medicinal insulin is made by bacteria carrying the gene for human insulin. Insulin is a small protein but even so has 791 atoms linked not only by covalent bonds but also by weaker effects which stabilise its complex 3D structure. This exemplifies the main features of biopharmaceuticals; they offer highly selective effects of great medical value but are very complicated and difficult to make. Currently there is much discussion of drugs which treat previously untreatable conditions e.g. Herceptin and metastatic breast cancer. Herceptin is a protein called an antibody which kills specific cancer cells just as our own antibodies protect us from invading cells. Antibodies currently account for most new biopharmaceuticals and are complexes of more than 20,000 atoms. There are many other proteins used to target specific effects impossible to achieve with small molecules. These include hormones (signalling molecules like insulin), enzymes which carry out chemical reactions in the body, and antiviral proteins like interferons. Although very different, they all start off being made in living cells which also contain several thousand other proteins. Thus they need to be purified or contaminants will poison the patient. Once pure, their fragile structure needs to be stabilised by storage at low temperature in the presence of soluble and solid stabilising agents. Development of these stages of manufacture is called bio processing and relies upon sensitive techniques to measure the purity, concentration and quality of the product at every stage. We already have ways to look at the 3D structure of proteins and these are to ensure that the products are correct. However, they need expensive apparatus, large amounts of protein and years of experience to use effectively. We already use these methods but want to develop small test kits that are sensitive to structural changes so that any variation in protein quality can be rapidly detected and subjected to proper analysis. These kits are based upon slow, complex existing procedures that currently need too much protein to be useful. We will develop methods for the specific purification of target protein from complex mixtures so that more stages of the process can be analysed. We will also reduce the amounts of protein needed for the traditional assays. However, we wish to spend most time developing easy to use kits which detect changes in the 3D structure by other means. In one example we will separate small amounts of protein according to how much strongly they bind to a waxy surface. Good quality proteins should not whilst ones that have not properly formed are sticky and bind. Another example will use a chemical that lights up when it binds to parts of proteins that are not correctly formed. We intend not only to miniaturise this but also use it to test protein stability by observing at what temperature the chemical is released. To test whether the proteins are individual or aggregated we will use small chemical linkers to freeze the aggregated state for a later analysis which separates proteins according to their size. Finally, we will use small enzymes which cut floppy bits of protein to detect whether the molecules are correctly or loosely folded up.
药物曾经只是小分子,如阿司匹林和青霉素。它们分别含有21个和42个原子,它们的结构由每个原子之间的刚性键决定。它们的纯度很容易测量,任何化学变化都可以通过既定的方法检测出来,而且它们的生产是直接的。目前,新一代生物制药正在涌现,它们使用体内发现的大分子,如蛋白质,选择性地治疗一系列疾病。最早的生物药物之一是来自动物胰腺的胰岛素,自20世纪20年代以来,S一直在治疗由于患者无法制造胰岛素而导致的各种形式的糖尿病。没有小分子可以像胰岛素那样做,现在药用胰岛素是由携带人类胰岛素基因的细菌制造的。胰岛素是一种很小的蛋白质,但即便如此,它也有791个原子,不仅通过共价键连接,而且通过更弱的作用来稳定其复杂的3D结构。这说明了生物制药的主要特点;它们具有很高的选择性,具有很高的医学价值,但非常复杂,很难制造。目前,有很多关于治疗以前无法治愈的疾病的药物的讨论,例如赫赛汀和转移性乳腺癌。赫赛汀是一种被称为抗体的蛋白质,它可以杀死特定的癌细胞,就像我们自己的抗体保护我们免受细胞入侵一样。抗体目前占大多数新的生物制药的份额,是超过20,000个原子的复合体。还有许多其他蛋白质用于靶向小分子无法达到的特定效果。这些物质包括激素(胰岛素等信号分子)、在体内进行化学反应的酶,以及干扰素等抗病毒蛋白。尽管差异很大,但它们都是从含有数千种其他蛋白质的活细胞中产生的。因此,它们需要提纯,否则污染物会毒死病人。一旦纯化,它们的脆弱结构需要通过在存在可溶性和固体稳定剂的低温下储存来稳定。这些生产阶段的开发被称为生物处理,并依赖于敏感的技术在每个阶段测量产品的纯度、浓度和质量。我们已经有了观察蛋白质3D结构的方法,这些方法是为了确保产品是正确的。然而,它们需要昂贵的仪器、大量的蛋白质和多年的经验才能有效使用。我们已经在使用这些方法,但希望开发对结构变化敏感的小型测试试剂盒,以便能够快速检测到蛋白质质量的任何变化,并进行适当的分析。这些试剂盒是基于缓慢、复杂的现有程序,目前需要太多的蛋白质才能发挥作用。我们将开发从复杂混合物中具体纯化目标蛋白的方法,以便分析该过程的更多阶段。我们还将减少传统检测所需的蛋白质数量。然而,我们希望将大部分时间花在开发易于使用的套件上,这些套件可以通过其他方式检测3D结构的变化。在一个例子中,我们将根据它们与蜡质表面结合的强度来分离少量蛋白质。高质量的蛋白质不应该,而那些没有正确形成的蛋白质是粘性的和结合的。另一个例子是使用一种化学物质,当它与不正确形成的蛋白质部分结合时,它就会发光。我们不仅打算将其微型化,还打算通过观察化学物质在什么温度下释放来测试蛋白质的稳定性。为了测试蛋白质是单独的还是聚集的,我们将使用小的化学连接物冻结聚集状态,以便稍后进行分析,根据蛋白质的大小分离蛋白质。最后,我们将使用小型酶来切割松软的蛋白质片段,以检测分子是正确折叠还是松散折叠。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-recognition by an intrinsically disordered protein.
通过本质上无序的蛋白质进行自我识别。
- DOI:10.1016/j.febslet.2008.06.022
- 发表时间:2008
- 期刊:
- 影响因子:3.5
- 作者:Hecht O
- 通讯作者:Hecht O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Lakey其他文献
Interfacial structure and protein incorporation in sparsely tethered phospholipid membranes
稀疏连接的磷脂膜中的界面结构和蛋白质结合
- DOI:
10.1016/j.jcis.2025.01.224 - 发表时间:
2025-05-15 - 期刊:
- 影响因子:9.700
- 作者:
Martynas Gavutis;Nicolò Paracini;Jeremy Lakey;Ramūnas Valiokas;Luke A. Clifton - 通讯作者:
Luke A. Clifton
Jeremy Lakey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Lakey', 18)}}的其他基金
Developing the Caf1 polymer technology into a commercial propositionEP/T005963/1
将 Caf1 聚合物技术开发为商业提案EP/T005963/1
- 批准号:
BB/T017198/1 - 财政年份:2020
- 资助金额:
$ 46.32万 - 项目类别:
Research Grant
Manufacture of complex protein polymers for industry and medicine
工业和医药用复杂蛋白质聚合物的制造
- 批准号:
BB/M018318/1 - 财政年份:2015
- 资助金额:
$ 46.32万 - 项目类别:
Research Grant
Surveillance of toxic threats by electronic supervision of synthetic neurons in 3D
通过 3D 合成神经元的电子监控来监测有毒威胁
- 批准号:
BB/J020176/1 - 财政年份:2012
- 资助金额:
$ 46.32万 - 项目类别:
Research Grant
Rapid diagnostic biosensors for the detection of respiratory viruses (VIRASENS)
用于检测呼吸道病毒的快速诊断生物传感器 (VIRASENS)
- 批准号:
TS/G001561/1 - 财政年份:2009
- 资助金额:
$ 46.32万 - 项目类别:
Research Grant
相似海外基金
A bench-top, parallel 8 bioreactor platform for optimizing the sustainable production of pharmaceuticals, biologics, materials, fuels and foods
用于优化药品、生物制剂、材料、燃料和食品可持续生产的台式、并行 8 生物反应器平台
- 批准号:
BB/X01911X/1 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Research Grant
Bench-top Reader and Aptamer-based Assay for Rapid, High-sensitivity Drug/Opiate Detection
用于快速、高灵敏度药物/阿片类药物检测的台式读数仪和基于适体的检测
- 批准号:
10760088 - 财政年份:2023
- 资助金额:
$ 46.32万 - 项目类别:
Leveraging Signal Deconvolution to Enable Reaction Monitoring using Bench-top Nuclear Magnetic Resonance
利用信号解卷积通过台式核磁共振实现反应监测
- 批准号:
576847-2022 - 财政年份:2022
- 资助金额:
$ 46.32万 - 项目类别:
Alliance Grants
EAR/IF: Acquisition of Bench Top SEM and Field Equipment for Research and Teaching
EAR/IF:采购用于研究和教学的台式 SEM 和现场设备
- 批准号:
2024962 - 财政年份:2020
- 资助金额:
$ 46.32万 - 项目类别:
Standard Grant
Bench-top replication of nanostructures with commercial polymeric materials
使用商业聚合物材料对纳米结构进行台式复制
- 批准号:
539808-2019 - 财政年份:2019
- 资助金额:
$ 46.32万 - 项目类别:
University Undergraduate Student Research Awards
Detecting hazardous concentrations of geogenic fluoride in drinking water: translating reagent-free sensorsfrom bench top to back pocket
检测饮用水中地源氟化物的危险浓度:将免试剂传感器从台式转移到后口袋
- 批准号:
548728-2020 - 财政年份:2019
- 资助金额:
$ 46.32万 - 项目类别:
Idea to Innovation
SBIR Phase I: Robust Bench-Top Oxygen Imager for Tissue Graft Viability Assessment
SBIR 第一阶段:用于组织移植物活力评估的稳健台式氧气成像仪
- 批准号:
1819583 - 财政年份:2018
- 资助金额:
$ 46.32万 - 项目类别:
Standard Grant
A bench-top type ultracentrifuge to secure the reliability of safety assessment of used nuclear fuel disposal
确保废核燃料处置安全评估可靠性的台式超速离心机
- 批准号:
RTI-2019-00733 - 财政年份:2018
- 资助金额:
$ 46.32万 - 项目类别:
Research Tools and Instruments
Laboratory Bench-Top EXAFS with STJ Spectrometer
配备 STJ 光谱仪的实验室台式 EXAFS
- 批准号:
10018070 - 财政年份:2017
- 资助金额:
$ 46.32万 - 项目类别:
Protocol Development for Utilizing Bench-top NMR Spectrometers in an Inert Atmosphere Glove Box
在惰性气氛手套箱中使用台式核磁共振波谱仪的方案开发
- 批准号:
520765-2017 - 财政年份:2017
- 资助金额:
$ 46.32万 - 项目类别:
Engage Grants Program