Structure, mechanism, and inhibition of AlkB homologues
AlkB 同系物的结构、机制和抑制
基本信息
- 批准号:7501393
- 负责人:
- 金额:$ 30.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-28 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenineAlkylationAttenuatedBindingBiochemicalBiochemical ReactionBiochemistryBiologicalBiological AssayBiological ProcessBiologyBiophysicsCellsChemical ModelsChemical StructureChemicalsClinicalClinical OncologyComplexConditionCytosineDNADNA DamageDNA Modification ProcessDNA RepairDNA Repair EnzymesEnzymesEscherichia coliEubacteriumEukaryotaEukaryotic CellExplosionFamilyGenomicsHomologous GeneHumanIn VitroKnowledgeLaboratoriesLesionMalignant NeoplasmsMediatingMessenger RNAMolecularMolecular BiologyMutationNitrogenNormal CellNucleotidesOncogenicOrganismPharmaceutical PreparationsPhysiologicalPlayPreparationProteinsPublishingQuantum MechanicsRateReactionRelative (related person)ResistanceRoleScreening procedureStructureSystemTechniquesTherapeutic AgentsTransfer RNATranslationsTumor BiologyUniversitiesVertebratesbasecancer therapychemical reactioncomputational chemistryenvironmental mutagensimprovedinhibitor/antagonistinterdisciplinary collaborationmolecular mechanicsmutantpreventrepairedresearch studysimulationthree dimensional structurevirtual
项目摘要
DESCRIPTION (provided by applicant): DNA repair is considered the double-edged sword of tumor biology. While the biochemical machinery that repairs DNA damage plays a central role in maintaining genomic integrity and thereby preventing cancer in normal cells, it also limits the efficacy of the DNA-damaging agents that represent some of the most widely used and successful chemotherapeutic drugs in clinical oncology. Therefore, a detailed understanding of the enzymatic reaction mechanisms and physiological functions of DNA repair enzymes represents essential basic knowledge concerning the function of normal cells and the systems that protect them from oncogenic transformation. However, this knowledge is also practically important in efforts to improve cancer therapy because inhibitors of DNA repair enzymes can potentiate the potency of other therapeutic agents. Recently, there has been an explosion of knowledge concerning the molecular function of the DNA repair enzymes in the AlkB superfamily, which are present in all eubacteria and all higher eukaryotes. These enzymes have been shown to catalyze direct repair of adenine and cytosine bases that have been alkylated on endocyclic ring nitrogen atoms, a toxic DNA modification that is mediated by both endogenous and environmental mutagens. Elucidation of the chemical reaction catalyzed by AlkB has enabled rapid progress to be made in understanding their physiological function, which includes repair of damaged mRNA and tRNA molecules that reduce translation efficiency in addition to repair of mutagenic lesions in DNA. However, numerous features of AlkB superfamily enzymes remain to be characterized, including the structural mechanisms enabling promiscuous recognition of different substrates, the details of their catalytic reaction mechanism, and the biological function of the 8 distinct sequence homologues that are conserved in mammalian organisms. We plan to apply a combination of biophysical, chemical, and molecular biological techniques to answer these fundamental questions concerning the biochemistry of AlkB-family DNA repair enzymes.
描述(申请人提供):DNA修复被认为是肿瘤生物学的双刃剑。虽然修复DNA损伤的生化机制在维持基因组完整性从而预防正常细胞中的癌症方面发挥着核心作用,但它也限制了DNA损伤剂的疗效,这些药物代表了临床肿瘤学中一些最广泛使用和最成功的化疗药物。因此,对DNA修复酶的酶反应机制和生理功能的详细了解对于了解正常细胞的功能和保护它们免受致癌转化的系统具有重要的基础知识。然而,这一知识在改进癌症治疗的努力中也非常重要,因为DNA修复酶的抑制剂可以增强其他治疗剂的效力。最近,关于AlkB超家族中DNA修复酶的分子功能的知识激增,该超家族存在于所有真细菌和所有高等真核生物中。这些酶已被证明催化内环氮原子上烷基化的腺嘌呤和胞嘧啶碱基的直接修复,这是一种由内源和环境诱变剂介导的有毒DNA修饰。AlkB催化的化学反应的阐明使人们在理解它们的生理功能方面取得了快速进展,包括修复受损的mRNA和tRNA分子,这些分子降低了翻译效率,还修复了DNA的突变损伤。然而,AlkB超家族酶的许多特征仍有待研究,包括使不同底物混杂识别的结构机制,其催化反应机制的细节,以及哺乳动物生物中保守的8个不同序列同源物的生物学功能。我们计划应用生物物理、化学和分子生物学技术的组合来回答这些关于碱性B家族DNA修复酶的生物化学的基本问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN Francis HUNT其他文献
JOHN Francis HUNT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN Francis HUNT', 18)}}的其他基金
Rational engineering of improved protein crystallization
改进蛋白质结晶的合理工程
- 批准号:
9767253 - 财政年份:2018
- 资助金额:
$ 30.13万 - 项目类别:
Rational engineering of improved protein crystallization
改进蛋白质结晶的合理工程
- 批准号:
10249105 - 财政年份:2018
- 资助金额:
$ 30.13万 - 项目类别:
SAFETY OF NEBULIZED ISOTONIC SALINE WITH ADDED ALKALINE GLYCINE SOLUTION
添加碱性甘氨酸溶液的雾化等渗盐水的安全性
- 批准号:
8167187 - 财政年份:2010
- 资助金额:
$ 30.13万 - 项目类别:
CRYSTAL STRUCTURES OF B SUBTILIS SECA MUTANTS
枯草芽孢杆菌 SECA 突变体的晶体结构
- 批准号:
7726207 - 财政年份:2008
- 资助金额:
$ 30.13万 - 项目类别:
Structure, mechanism, and inhibition of AlkB homologues
AlkB 同系物的结构、机制和抑制
- 批准号:
7388051 - 财政年份:2007
- 资助金额:
$ 30.13万 - 项目类别:
相似海外基金
The Role of Adenine Nucleotide Translocase in Mitochondrial Dysfunction Associated Senescence in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在慢性阻塞性肺病(COPD)线粒体功能相关衰老中的作用
- 批准号:
10633608 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10534031 - 财政年份:2022
- 资助金额:
$ 30.13万 - 项目类别:
Pathways of Succinate Accumulation and Adenine Nucleotide Depletion in Cardiac Ischemia
心脏缺血中琥珀酸积累和腺嘌呤核苷酸消耗的途径
- 批准号:
10794933 - 财政年份:2022
- 资助金额:
$ 30.13万 - 项目类别:
Development of nobel assay methods for miRNA and adenine methyltransferase using FRET
使用 FRET 开发 miRNA 和腺嘌呤甲基转移酶的诺贝尔检测方法
- 批准号:
21K05120 - 财政年份:2021
- 资助金额:
$ 30.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Critical assessment of DNA adenine methylation in brain cells from healthy aging and Alzheimer's disease
健康老龄化和阿尔茨海默病脑细胞 DNA 腺嘌呤甲基化的批判性评估
- 批准号:
10365337 - 财政年份:2021
- 资助金额:
$ 30.13万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10033546 - 财政年份:2020
- 资助金额:
$ 30.13万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10613902 - 财政年份:2020
- 资助金额:
$ 30.13万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10226235 - 财政年份:2020
- 资助金额:
$ 30.13万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10396102 - 财政年份:2020
- 资助金额:
$ 30.13万 - 项目类别:
DNA Methylation at N6-Adenine in Placental Trophoblast Development
胎盘滋养层发育中 N6-腺嘌呤 DNA 甲基化
- 批准号:
10705982 - 财政年份:2020
- 资助金额:
$ 30.13万 - 项目类别: