Processing of cell surface lipoproteins in Streptomyces coelicolor. A new paradigm?

天蓝色链霉菌细胞表面脂蛋白的加工。

基本信息

  • 批准号:
    BB/F009429/1
  • 负责人:
  • 金额:
    $ 40.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

Bacteria can be divided into two main groups; Gram negative bacteria have two membranes surrounding the cell, the cytoplasmic membrane and the outer membrane. They also have a space between these membranes called the periplasm. Proteins which are exported across the cytoplasmic membrane typically end up in the periplasm. Gram positive bacteria have only a single membrane, surrounded by a thick cell wall. Proteins which are exported across the membrane must be anchored to the outer surface of the membrane, or the cell wall, to avoid being lost entirely from the cell. These cell surface proteins act as a point of contact with the outside world and are involved in a number of essential processes including sensing environmental changes, protein folding, respiration and nutrient scavenging. They also have an important role in surface attachment and are essential for successful host infection in disease-causing bacteria. One of the main ways in which bacteria attach proteins to their membranes is by attaching a lipid molecule to the N-terminal end of the protein. The widely accepted model suggests that these 'lipoproteins' are first targeted to the Sec (secretion) pathway by a signal sequence at the N-terminus of the protein. Sec transports them across the cytoplasmic membrane to the outside of the cell where an enzyme called Lgt attaches the lipid molecule. The signal sequence is then cleaved by an enzyme called Lsp. In Gram positive bacteria the pathway ends here and the proteins are attached to the outer face of the membrane. In Gram negative bacteria these proteins have another lipid molecule attached by an enzyme called Lnt and this allows them to be transported to the outer membrane. Only a small proportion is retained in the inner membrane. In Gram negative bacteria all the enzymes involved in lipoprotein biosynthesis are essential, probably because removing any one of them results in lipoproteins accumulating in, and destabilising, the inner membrane. In Gram positive bacteria they are essential for the virulence of many disease-causing organisms. They therefore represent an excellent target for new antibacterial drugs such as globomycin, a strong inhibitor of Lsp. We have been studying lipoprotein biosynthesis in the Gram positive bacterium Streptomyces coelicolor, and have discovered some surprising differences which could challenge the widely accepted model. Previously it was assumed that all lipoproteins were exported by Sec but this is not the case in S. coelicolor. We have good evidence that some S. coelicolor lipoproteins can be exported by the Tat secretion pathway. While Sec transports linear proteins, Tat is typically used to transport fully folded proteins which are assembled inside the cell. This challenges the current model and it also suggests that the Lgt enzyme can attach lipids to both linear and fully folded proteins. S. coelicolor is unusual in that it contains two Lgt enzymes and it is possible that one acts on Sec-, and the other on Tat-dependent lipoproteins. Finally, and perhaps most puzzlingly of all, S. coelicolor contains two Lnt enzymes. This enzyme performs a step previously thought to be unique to Gram negative bacteria. Since Gram positive bacteria do not have an outer membrane the function of these enzymes in S. coelicolor are unclear. In this study we will investigate the differences in the export and modification of Tat- and Sec-dependent lipoproteins. We will examine the functions of the two Lgt enzymes in these processing pathways. We will also test the activities of the Lnt enzymes to see if they have the same function as Lnt in Gram negative bacteria. We anticipate that the results of this study will lead to a paradigm shift in our understanding of bacterial lipoprotein biosynthesis.
细菌可分为两大类;革兰氏阴性菌有两层膜包围细胞,细胞质膜和外膜。在这些膜之间还有一个空间叫做周质。穿过细胞质膜输出的蛋白质通常在周质中结束。革兰氏阳性菌只有一层膜,被厚厚的细胞壁包围。跨膜输出的蛋白质必须锚定在膜的外表面或细胞壁上,以避免从细胞中完全丢失。这些细胞表面蛋白充当与外界接触的点,并参与许多重要过程,包括感知环境变化,蛋白质折叠,呼吸和营养清除。它们在表面附着中也具有重要作用,并且对于致病细菌的成功宿主感染至关重要。细菌将蛋白质附着在其膜上的主要方式之一是将脂质分子附着在蛋白质的N末端。广泛接受的模型表明,这些“脂蛋白”首先通过蛋白质N-末端的信号序列靶向Sec(分泌)途径。Sec将它们穿过细胞质膜运输到细胞外,在那里一种称为Lgt的酶附着在脂质分子上。然后信号序列被称为Lsp的酶切割。在革兰氏阳性细菌中,该途径在此结束,蛋白质附着在膜的外表面。在革兰氏阴性细菌中,这些蛋白质具有另一种由称为Lnt的酶连接的脂质分子,这使得它们能够被转运到外膜。只有一小部分保留在内膜中。在革兰氏阴性菌中,参与脂蛋白生物合成的所有酶都是必不可少的,可能是因为去除其中任何一种都会导致脂蛋白在内膜中积累并使内膜不稳定。在革兰氏阳性菌中,它们对于许多致病生物的毒力是必需的。因此,它们代表了新的抗菌药物如球霉素(一种Lsp的强抑制剂)的极好靶点。我们一直在研究革兰氏阳性菌天蓝色链霉菌中的脂蛋白生物合成,并发现了一些令人惊讶的差异,这些差异可能会挑战广泛接受的模型。以前认为所有的脂蛋白都是由Sec输出的,但在S.天蓝色。我们有充分的证据表明,一些S。腔肠脂蛋白可以通过达特分泌途径输出。Sec转运线性蛋白质,而达特通常用于转运在细胞内组装的完全折叠的蛋白质。这挑战了目前的模型,也表明Lgt酶可以将脂质连接到线性和完全折叠的蛋白质上。S. coelicolor的不寻常之处在于它含有两种Lgt酶,并且可能一种作用于Sec-依赖性脂蛋白,另一种作用于Tat-依赖性脂蛋白。最后,也许是最令人困惑的,S。腔棘鱼含有两种Lnt酶。这种酶执行先前认为是革兰氏阴性细菌特有的步骤。由于革兰氏阳性菌没有外膜,因此这些酶在S。coelicolor不清楚。在这项研究中,我们将调查的差异,出口和修改的达特-和sec-依赖性脂蛋白。我们将研究这两种Lgt酶在这些加工途径中的功能。我们还将测试Lnt酶的活性,以确定它们是否具有与革兰氏阴性菌中的Lnt相同的功能。我们预计,这项研究的结果将导致我们对细菌脂蛋白生物合成的理解发生范式转变。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence.
  • DOI:
    10.1038/srep01109
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Clark, Laura C.;Seipke, Ryan F.;Prieto, Pilar;Willemse, Joost;van Wezel, Gilles P.;Hutchings, Matthew I.;Hoskisson, Paul A.
  • 通讯作者:
    Hoskisson, Paul A.
Cosmid based mutagenesis causes genetic instability in Streptomyces coelicolor, as shown by targeting of the lipoprotein signal peptidase gene.
  • DOI:
    10.1038/srep29495
  • 发表时间:
    2016-07-12
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Munnoch JT;Widdick DA;Chandra G;Sutcliffe IC;Palmer T;Hutchings MI
  • 通讯作者:
    Hutchings MI
The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster.
  • DOI:
    10.1371/journal.pone.0003623
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tucker NP;Hicks MG;Clarke TA;Crack JC;Chandra G;Le Brun NE;Dixon R;Hutchings MI
  • 通讯作者:
    Hutchings MI
Cosmid based mutagenesis causes genetic instability in Streptomyces coelicolor , as shown by targeting of the lipoprotein signal peptidase gene
基于粘粒的诱变导致天蓝色链霉菌遗传不稳定,如脂蛋白信号肽酶基因靶向所示。
  • DOI:
    10.1101/049320
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Munnoch J
  • 通讯作者:
    Munnoch J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Hutchings其他文献

A Simple Setup for Transfer Hydrogenations in Flow Chemistry
流动化学中转移氢化的简单设置
  • DOI:
    10.1055/s-0035-1561624
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Matthew Hutchings;T. Wirth
  • 通讯作者:
    T. Wirth
Safe Use of Nitromethane for Aldol Reactions in Flow
硝基甲烷在流动中安全使用羟醛反应
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Matthew Hutchings;T. Wirth
  • 通讯作者:
    T. Wirth

Matthew Hutchings的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Hutchings', 18)}}的其他基金

Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
  • 批准号:
    BB/Y005724/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Post-translation regulation of antibiotic production in Streptomyces: the loaded gun hypothesis.
链霉菌抗生素生产的翻译后调控:装弹枪假说。
  • 批准号:
    BB/W000628/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Streptomyces bacteria: Antibiotic production in the wheat endosphere
链霉菌:小麦内圈的抗生素生产
  • 批准号:
    BB/T015446/1
  • 财政年份:
    2020
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Regulation, biosynthesis and mode of action of formicamycins, promising new antibiotics with a high barrier to resistanc
福米霉素的调控、生物合成和作用方式,有望成为具有高耐药屏障的新型抗生素
  • 批准号:
    BB/S00811X/2
  • 财政年份:
    2020
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Regulation, biosynthesis and mode of action of formicamycins, promising new antibiotics with a high barrier to resistanc
福米霉素的调控、生物合成和作用方式,有望成为具有高耐药屏障的新型抗生素
  • 批准号:
    BB/S00811X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Understanding and manipulating a conserved and essential transcription factor to activate antibiotic production in Streptomyces species
了解和操纵保守且必需的转录因子以激活链霉菌物种中的抗生素生产
  • 批准号:
    BB/P005292/1
  • 财政年份:
    2017
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Partner choice: How does a host select and control its microbiome?
合作伙伴选择:宿主如何选择和控制其微生物组?
  • 批准号:
    NE/M015033/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Let the right ones in: Testing microeconomic models of screening in an ant-bacteria microbiome
让合适的人进来:测试抗菌微生物组筛选的微观经济模型
  • 批准号:
    NE/J01074X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
Isolation and characterisation of novel antimycotics
新型抗真菌药的分离和表征
  • 批准号:
    G0801721/1
  • 财政年份:
    2009
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant

相似国自然基金

全细胞疫苗Cell@MnO2的乳腺癌术后免疫响应监测与放射免疫治疗研究
  • 批准号:
    QN25H220002
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
染色体外环状DNA以cell-in-cell途径促进基因横向传递和扩增的研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
GMFG/F-actin/cell adhesion 轴驱动 EHT 在造 血干细胞生成中的作用及机制研究
  • 批准号:
    TGY24H080011
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于In-cell NMR策略对“舟楫之剂”桔梗中引经药效物质的快速发现研究
  • 批准号:
    82305053
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
糖尿病ED中成纤维细胞衰老调控内皮细胞线粒体稳态失衡的机制研究
  • 批准号:
    82371634
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
  • 批准号:
    82371799
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
  • 批准号:
    82371616
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
利用CRISPR内源性激活Atoh1转录促进前庭毛细胞再生和功能重建
  • 批准号:
    82371145
  • 批准年份:
    2023
  • 资助金额:
    46.00 万元
  • 项目类别:
    面上项目
IL-4协同精氨酸优化种植初期巨噬细胞胞葬作用和成骨微环境的作用及机制研究
  • 批准号:
    82370923
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
胆固醇合成蛋白CYP51介导线粒体通透性转换诱发Th17/Treg细胞稳态失衡在舍格伦综合征中的作用机制研究
  • 批准号:
    82370976
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目

相似海外基金

Non-canonical epitope presentation and antigen processing by MHC-E
MHC-E 的非典型表位呈递和抗原加工
  • 批准号:
    10801509
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
Pre-mRNA Processing and Function of Alternatively Spliced Isoforms of TFPI
TFPI 选择性剪接亚型的前 mRNA 加工和功能
  • 批准号:
    10664506
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
Role of APOE in endosomal processing of alpha-synuclein
APOE 在 α-突触核蛋白内体加工中的作用
  • 批准号:
    10739682
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
Traveling waves in neocortical circuits: Mechanisms, computational roles in sensory processing, and impact on sensory perception
新皮质回路中的行波:感觉处理中的机制、计算作用以及对感觉知觉的影响
  • 批准号:
    10655101
  • 财政年份:
    2023
  • 资助金额:
    $ 40.07万
  • 项目类别:
NMR-Based Rapid Fluid Assessment: Device Design and Signal Processing
基于 NMR 的快速流体评估:设备设计和信号处理
  • 批准号:
    10441674
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
NMR-Based Rapid Fluid Assessment: Device Design and Signal Processing
基于 NMR 的快速流体评估:设备设计和信号处理
  • 批准号:
    10617808
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
Neural Processing of Native and Prosthetic Vestibular Signals for Postural Control
用于姿势控制的天然和假体前庭信号的神经处理
  • 批准号:
    10607477
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
Telomere end processing and telomere stability maintenance in trypanosomes
锥虫的端粒末端加工和端粒稳定性维持
  • 批准号:
    10503111
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
Telomere end processing and telomere stability maintenance in trypanosomes
锥虫的端粒末端加工和端粒稳定性维持
  • 批准号:
    10677878
  • 财政年份:
    2022
  • 资助金额:
    $ 40.07万
  • 项目类别:
Understanding how ciliary gene mutations affect the processing and activity of Gli2 and Gli3 transcription factors
了解纤毛基因突变如何影响 Gli2 和 Gli3 转录因子的加工和活性
  • 批准号:
    10296258
  • 财政年份:
    2021
  • 资助金额:
    $ 40.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了