Are bacteria or archaea the major players in nitrogen fertiliser loss in agricultural soils?
细菌或古细菌是农业土壤氮肥损失的主要因素吗?
基本信息
- 批准号:BB/F022646/1
- 负责人:
- 金额:$ 41.94万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Which microorganisms are responsible for nitrogen fertiliser loss? Nitrogen is the major fertiliser required for crop production. In the recent past, nitrogen fertiliser has been added to crops in an inorganic form, as an ammonium salt. Ammonia is converted to nitrate by two groups of soil microorganisms in a process termed nitrification: ammonia oxidisers convert ammonia to nitrite, which is converted to nitrite by nitrite oxidisers. Ammonium is retained within the soil but nitrate is readily leached and can accumulate to high, polluting levels in groundwater used to supply drinking water. In addition, ammonia oxidation is accompanied by production of nitrous oxide, a potent greenhouse gas, which is also produced by reduction of nitrate. Nitrification therefore leads to pollution and to significant losses of applied nitrogen fertiliser. Nitrogen fertiliser loss can be reduced by application of nitrification inhibitors with inorganic fertilisers or by use of fertilisers which release ammonia slowly, such as composted manure. Until recently it was believed that the most important soil ammonia oxidisers were bacteria. However, this view was overturned by the recent discovery of organisms belonging to another microbial domain, the archaea, which can also oxidise ammonia. These organisms belong to a subgroup of archaea, the crenarchaea, which are present in all soils but which have never been isolated in the laboratory. We therefore require cultivation-independent, molecular techniques to assess their presence and importance. These techniques show that ammonia oxidising crenarchaea are usually more abundant than ammonia oxidising bacteria and also appear to have greater activity. There is also evidence that they may prefer lower ammonia concentrations than bacteria. Inorganic nitrogen fertilisers generate high concentrations and crenarchaeal ammonia oxidisers may therefore have a bigger role in nitrification in sustainable systems, using organic fertiliser. To determine the importance of crenarchaeal ammonia oxidisers, we will use a combination of field studies, microcosms and physiological experiments to address four objectives. 1. Determination of the relative responses of bacterial and crenarchaeal ammonia oxidisers to ammonia concentration. 2. Determination of whether different fertilisers select for different ammonia oxidiser communities. 3. Assessment of conversion of different fertilisers by bacteria and crenarchaea. 4. Determination of contributions of crenarchaea and bacterial to ammonia oxidation in subsoils. 5. Determination of relative sensitivities of crenarchaea and bacteria to nitrification inhibitors. We will determine the abundances and activities of ammonia oxidising bacteria and crenarchaea in two field sites, with contrasting soils, that have been treated for many years with either inorganic N fertiliser or composted manure. Molecular techniques will be used to determine the population sizes of the two microbial groups. Activity will be investigated by quantification of the levels of expression of amoA, a key gene in ammonia oxidation that encodes part of the protein ammonia monooxygenase. The influence of different fertilisers and of nitrification inhibitors will be investigated using cells extracted from the different soils and in small-scale soil microcosms. We will also use molecular techniques to determine whether particular subgroups within ammonia oxidising bacteria or archaea are influenced differently by ammonia concentration or by nitrification inhibitors. The findings will benefit those in agriculture, environmental agencies and industry by increasing understanding of the roles of microorganisms in nitrogen fertiliser loss and the impacts of different microbial groups on nitrification in traditional and sustainable systems and in subsoils. The findings will also be important to researchers and environmentalists interested in the links between biodiversity and ecosystem function.
哪些微生物会导致氮肥流失?氮是作物生产所需的主要肥料。在最近的过去,氮肥已经以无机形式作为铵盐添加到作物中。氨被两组土壤微生物在称为硝化的过程中转化为硝酸盐:氨氧化剂将氨转化为亚硝酸盐,亚硝酸盐氧化剂将其转化为亚硝酸盐。铵被保留在土壤中,但硝酸盐很容易被沥滤,并可能在用于供应饮用水的地下水中积累到高污染水平。此外,氨氧化伴随着一氧化二氮的产生,一氧化二氮是一种强效的温室气体,硝酸盐还原也会产生这种气体。因此,硝化作用导致污染和施用氮肥的显著损失。氮素肥料的损失可以通过与无机肥料一起使用硝化抑制剂或使用缓慢释放氨的肥料(如堆肥)来减少。直到最近,人们才相信最重要的土壤氨氧化剂是细菌。然而,这种观点被最近发现的属于另一种微生物领域的生物所推翻,古细菌也可以氧化氨。这些生物属于古菌的一个亚群,crenarchaea,存在于所有土壤中,但从未在实验室中分离出来。因此,我们需要培养独立的分子技术来评估它们的存在和重要性。这些技术表明,氨氧化泉古菌通常比氨氧化细菌更丰富,并且似乎具有更大的活性。还有证据表明,它们可能比细菌更喜欢低浓度的氨。无机氮肥产生高浓度,因此,在使用有机肥料的可持续系统中,泉古菌氨氧化剂可能在硝化作用中发挥更大的作用。为了确定crenarchaeal氨氧化剂的重要性,我们将结合实地研究,微观世界和生理实验来解决四个目标。1.细菌和泉古菌氨氧化剂对氨浓度相对响应的测定。2.确定不同的肥料是否适合不同的氨氧化物群落。3.细菌和泉古菌对不同肥料转化的评估。4.泉古菌和细菌对底土氨氧化作用贡献的测定。5.泉古菌和细菌对硝化抑制剂相对敏感性的测定。我们将确定的丰度和活动的氨氧化细菌和crenarchea在两个领域的网站,对比土壤,已处理多年的无机氮肥或堆肥。将使用分子技术来确定两个微生物组的种群大小。将通过定量amoA的表达水平来研究活性,amoA是氨氧化中的关键基因,编码蛋白质氨单加氧酶的一部分。不同肥料和硝化抑制剂的影响将使用从不同土壤中提取的细胞和在小规模的土壤微宇宙中进行研究。我们还将使用分子技术来确定氨氧化细菌或古细菌内的特定亚群是否受到氨浓度或硝化抑制剂的不同影响。这些发现将使农业,环境机构和工业部门受益,增加对微生物在氮肥损失中的作用以及不同微生物群体对传统和可持续系统以及底土中硝化作用的影响的了解。这些发现对于对生物多样性和生态系统功能之间的联系感兴趣的研究人员和环保主义者也很重要。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graeme Nicol其他文献
Graeme Nicol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graeme Nicol', 18)}}的其他基金
Do novel acidophilic archaeal ammonia oxidisers solve the paradox of nitrification in acid soils?
新型嗜酸古菌氨氧化剂能否解决酸性土壤中硝化的悖论?
- 批准号:
NE/I027835/1 - 财政年份:2011
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
Do Archaea dominate nitrification in acid soils?
古细菌在酸性土壤中主导硝化作用吗?
- 批准号:
NE/F021909/1 - 财政年份:2009
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
Linking crenarchaeal activity to global nitrogen cycling in soil
将穹窿活动与土壤中的全球氮循环联系起来
- 批准号:
NE/D010195/1 - 财政年份:2006
- 资助金额:
$ 41.94万 - 项目类别:
Fellowship
相似国自然基金
嗜盐古生菌HSP70蛋白基因的转录及其调控研究
- 批准号:30470033
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Harnessing the potential of Archaea - Training Europe's next visionaries for an innovative and sustainable future
利用古生菌的潜力 - 培训欧洲的下一代有远见的人以实现创新和可持续的未来
- 批准号:
EP/Y031407/1 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
The mobilome of the anaerobic methanotrophic archaea Methanoperedenaceae
厌氧甲烷氧化古菌 Methanoperedenaceae 的移动组
- 批准号:
DP240100992 - 财政年份:2024
- 资助金额:
$ 41.94万 - 项目类别:
Discovery Projects
Asgard archaea: the first eukaryotic cells?
阿斯加德古菌:第一个真核细胞?
- 批准号:
DP230100769 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Discovery Projects
DRUG DISCOVERY BY DIRECTED EVOLUTION IN MAMMALIAN CELLS
通过哺乳动物细胞定向进化发现药物
- 批准号:
10644749 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Active-site models unravel mechanism of enzymatic alkane activation
活性位点模型揭示了酶促烷烃活化的机制
- 批准号:
10711929 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Evolutionary forces driving the diversity of protist symbioses
驱动原生生物共生多样性的进化力量
- 批准号:
23K14256 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Probing the mechanisms that couple genome segregation to chromosome organization in Archaea
探讨古细菌基因组分离与染色体组织的耦合机制
- 批准号:
BB/X00645X/1 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
Probing the mechanisms that couple genome segregation to chromosome organisation in Archaea
探讨古细菌基因组分离与染色体组织的耦合机制
- 批准号:
BB/X006506/1 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Research Grant
Deciphering the molecular mechanisms of sterol lipid trafficking in bacteria
破译细菌中甾醇脂质运输的分子机制
- 批准号:
10711607 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Molecular mechanisms of memory formation and tolerance in CRISPR-Cas systems
CRISPR-Cas系统中记忆形成和耐受的分子机制
- 批准号:
10570544 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别: