How does the spindle checkpoint convert Cdc20 into an APC/C substrate?

主轴检查点如何将 Cdc20 转化为 APC/C 底物?

基本信息

  • 批准号:
    BB/G001537/1
  • 负责人:
  • 金额:
    $ 32.53万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

It is crucial that cell division should generate two identical daughter cells. The daughter cells recieve an exact copy of the genetic material from the original cell. The distribution of the genetic material in the form of chromosomes is monitored carefully by the cell during cell division. The system monitoring this process is referred to as the Spindle Assembly Checkpoint. If the Spindle Assembly Checkpoint is not working properly the daughter cells will not get an exact copy of the genetic material. This results in an unequal number of chromosomes being passed to the two daughters and this is called called aneuploidy. Recent research indicates that aneuploidy can initiate tumor formation and indeed many tumor cell lines appear to have a weak Spindle Assembly Checkpoint. We are focusing our efforts on trying to understand how the Spindle Assembly Checkpoint functions in normal cells, and to gain insight into why it might become defective in tumors. We know the Spindle Assembly Checkpoint inhibits the protein Cdc20. Cdc20 is an activator of a large complex called the Anaphase Promoting Complex/Cyclosome (APC/C) that is responsible for degrading specific proteins in mitosis. Two components of the Spindle Assembly Checkpoint namely Mad2 and BubR1 bind directly to Cdc20 and are responsible for this inhibition. We have recently found that not only does the Spindle Assembly Checkpoint inhibit Cdc20 but it also targets Cdc20 for degradation via APC/C. This means that when the Spindle Assembly Checkpoint is active Cdc20 switches from an activator of the APC/C to a substrate. We have also shown that this degradation of Cdc20 is important for maintaining an active checkpoint. We now want to understand how the Spindle Assembly Checkpoint turns Cdc20 into a substrate of the APC/C and we are particular focusing on the role of BubR1 in this aspect since this appear to be the key component responsible for this. For BubR1 to target Cdc20 for degradation it needs to be able to bind to Cdc20. We have found that Mad2 is absolutely essential for the binding of BubR1 to Cdc20 and we will investigate why this is so.
细胞分裂产生两个相同的子细胞是至关重要的。子细胞从原始细胞获得遗传物质的精确拷贝。染色体形式的遗传物质的分布在细胞分裂期间由细胞仔细监测。监控此过程的系统称为主轴装配检查点。如果纺锤体组装检查点不能正常工作,子细胞将无法获得遗传物质的精确拷贝。这导致了不相等数量的染色体传递给两个女儿,这就是所谓的非整倍性。最近的研究表明,非整倍体可以启动肿瘤形成,并且实际上许多肿瘤细胞系似乎具有弱的纺锤体组装检查点。我们正集中精力试图了解纺锤体组装检查点在正常细胞中的功能,并深入了解为什么它可能在肿瘤中有缺陷。我们知道纺锤体组装检查点抑制蛋白Cdc 20。Cdc 20是一种称为后期促进复合物/环体(APC/C)的大型复合物的激活剂,该复合物负责降解有丝分裂中的特定蛋白质。纺锤体组装检查点的两个组分,即Mad 2和BubR 1直接结合Cdc 20,并负责这种抑制。我们最近发现,主轴组装检查点不仅抑制Cdc 20,而且还通过APC/C靶向Cdc 20进行降解。这意味着当主轴组件检查点激活时,Cdc 20从APC/C的激活器切换到衬底。我们还表明,Cdc 20的这种降解对于维持活跃的检查点很重要。我们现在想了解主轴组装检查点如何将Cdc 20转变为APC/C的基底,我们特别关注BubR 1在这方面的作用,因为这似乎是负责此的关键组件。为了使BubR 1靶向Cdc 20进行降解,它需要能够与Cdc 20结合。我们已经发现Mad 2对于BubR 1与Cdc 20的结合是绝对必要的,我们将研究为什么会这样。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment.
  • DOI:
    10.1038/ncb2347
  • 发表时间:
    2011-09-18
  • 期刊:
  • 影响因子:
    21.3
  • 作者:
  • 通讯作者:
The spindle assembly checkpoint works like a rheostat rather than a toggle switch.
  • DOI:
    10.1038/ncb2855
  • 发表时间:
    2013-11
  • 期刊:
  • 影响因子:
    21.3
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathon Pines其他文献

c-mos proto-oncogene product is partly degraded after release from meiotic arrest and persists during interphase in mouse zygotes.
c-mos原癌基因产物在减数分裂停滞释放后部分降解,并在小鼠受精卵的间期持续存在。
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Michèle Weber;Jacek Z. Kubiak;R. B. Arlinghaus;Jonathon Pines;B. Maro
  • 通讯作者:
    B. Maro
Defining the role of Emi1 in the DNA replication–segregation cycle
  • DOI:
    10.1007/s00412-008-0152-x
  • 发表时间:
    2008-03-04
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Barbara Di Fiore;Jonathon Pines
  • 通讯作者:
    Jonathon Pines
Cyclins: wheels within wheels.
Clear as crystal?
  • DOI:
    10.1016/0960-9822(93)90053-q
  • 发表时间:
    1993-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jonathon Pines
  • 通讯作者:
    Jonathon Pines
High resolution profiling of cell cycle-dependent protein and phosphorylation abundance changes in non-transformed cells
非转化细胞中细胞周期依赖性蛋白质和磷酸化丰度变化的高分辨率分析
  • DOI:
    10.1038/s41467-025-57537-8
  • 发表时间:
    2025-03-16
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Camilla Rega;Ifigenia Tsitsa;Theodoros I. Roumeliotis;Izabella Krystkowiak;Maria Portillo;Lu Yu;Julia Vorhauser;Jonathon Pines;Jörg Mansfeld;Jyoti Choudhary;Norman E. Davey
  • 通讯作者:
    Norman E. Davey

Jonathon Pines的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathon Pines', 18)}}的其他基金

Smart acquisition and data reduction for light-sheet microscopy of the cell cycle
细胞周期光片显微镜的智能采集和数据缩减
  • 批准号:
    BB/P026672/1
  • 财政年份:
    2017
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
Understanding how cells trigger mitosis
了解细胞如何触发有丝分裂
  • 批准号:
    G1000818/1
  • 财政年份:
    2011
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
How is the Spindle Assembly Checkpoint turned off?
如何关闭主轴装配检查点?
  • 批准号:
    BB/I022376/1
  • 财政年份:
    2011
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
Understanding mitosis using real time analysis of mitotic protein kinase activity
使用有丝分裂蛋白激酶活性的实时分析了解有丝分裂
  • 批准号:
    G0800033/1
  • 财政年份:
    2008
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
Investigating the role of cyclin B1 in early cell division
研究细胞周期蛋白 B1 在早期细胞分裂中的作用
  • 批准号:
    G0701184/1
  • 财政年份:
    2008
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant

相似国自然基金

衍射光学三维信息加密与隐藏的研究
  • 批准号:
    60907004
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
  • 批准号:
    DE240100614
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Discovery Early Career Researcher Award
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Training Grant
The excess gas paradox at volcanoes: does CO2 favor gas accumulation in mafic magmas?
火山中的过量气体悖论:二氧化碳是否有利于镁铁质岩浆中的气体积累?
  • 批准号:
    2322935
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Continuing Grant
Does chronic thyroid inflammation explain persistent symptoms in Hashimoto thyroiditis?
慢性甲状腺炎症是否可以解释桥本甲状腺炎的持续症状?
  • 批准号:
    MR/Z503617/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
Does deformation lead to misinformation? How much can granitic rocks deform before accessory minerals are geochemically disturbed?
变形会导致错误信息吗?
  • 批准号:
    2342159
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
Does the functional load principle predict to how non-native English speakers assess the pronunciation intelligibility of Japanese non-native English speakers?
功能负荷原则是否可以预测非英语母语人士如何评估日语非英语母语人士的发音清晰度?
  • 批准号:
    24K04051
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Meiosis in Plasmodium: How does it work?
疟原虫减数分裂:它是如何运作的?
  • 批准号:
    BB/X014681/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
How does membrane lipid remodelling enable intracellular survival of B. cenocepacia?
膜脂重塑如何使新洋葱伯克霍尔德氏菌在细胞内存活?
  • 批准号:
    BB/X01651X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
  • 批准号:
    2305448
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Fellowship Award
When does a supershedder become a superspreader?: The impact of individual-level heterogeneities on population-level transmission and spread
超级传播者何时成为超级传播者?:个体水平异质性对群体水平传播和传播的影响
  • 批准号:
    NE/X01424X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了