Surface Myoelectric Control of Hand Prothetics

手部假肢的表面肌电控制

基本信息

项目摘要

DESCRIPTION (provided by applicant): There are approximately 500,000 upper extremity amputees currently living in the United States; with 18,000 new upper extremity amputees added each year. The loss of an upper limb causes a person's quality of life to plummet and brings about massive physical and psychosocial challenges. The majority of amputees are hampered by restricted functionality and use a mechanical hook or a passive, cosmetic hand. Electric Grabber hands are available, but their use is limited due to a cumbersome control mechanism. Therefore, we propose to develop a noninvasive Surface EMG Decoder And Controller (SEDAC) for use in currently available Electric Grabber hands. It employs a feature extractor and an artificial neural network classifier to estimate intended hand movements. This will enable intuitive control of the prosthetic hand. Our Phase I effort is focused on the development and validation of SEDAC for real-time decoding and control of a two-function prosthesis. This offers three key advantages over current technology: 1) intuitive activation of muscle groups for each kind of movement; 2) smooth transition from one movement to another; and 3) a learning capacity which transfers the burden of training from the patient to the prosthetic. Our Phase II effort builds upon this to incorporate dimensionality reducing algorithms to improve accuracy, reduce latency, and enable intuitive control of 4 additional hand functions. This will allow for actuation of next- generation dexterous prosthetic hands which are currently under development. Through these advances, we hope to bring about a much needed improvement in the quality of life for upper extremity amputees. PUBLIC HEALTH RELEVANCE: This project will provide trans-radial amputees with intuitive control of current generation prosthetics using surface electromyography (EMG). The technology will also provide a foundation for surface EMG control of fully dexterous prosthetics.
描述(由申请人提供):目前约有500,000名上肢截肢者居住在美国;每年新增18,000名上肢截肢者。失去上肢会导致一个人的生活质量下降,并带来巨大的身体和心理社会挑战。大多数截肢者受到功能限制的阻碍,使用机械钩或被动的美容手。电动抓取手是可用的,但它们的使用是有限的,由于繁琐的控制机制。因此,我们建议开发一种非侵入性的表面肌电解码器和控制器(SEDAC),用于目前可用的电动抓斗手。它采用了一个特征提取器和人工神经网络分类器来估计预期的手部动作。这将使得能够直观地控制假手。我们的第一阶段工作重点是开发和验证SEDAC,用于实时解码和控制双功能假体。与现有技术相比,这提供了三个关键优势:1)针对每种运动的肌肉群的直观激活; 2)从一种运动到另一种运动的平滑过渡;以及3)将训练负担从患者转移到假肢的学习能力。我们的第二阶段工作以此为基础,纳入降维算法,以提高准确性、减少延迟,并实现对4种额外手部功能的直观控制。这将允许目前正在开发的下一代灵巧假手的驱动。通过这些进步,我们希望为上肢截肢者的生活质量带来急需的改善。公共卫生关系:该项目将利用表面肌电描记术(EMG)为经桡动脉截肢者提供对当前一代假肢的直观控制。该技术还将为全灵巧假肢的表面肌电控制提供基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID Lee SHERMAN其他文献

DAVID Lee SHERMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID Lee SHERMAN', 18)}}的其他基金

Laser Speckle Imaging of Brain Tumor Vasculature
脑肿瘤脉管系统的激光散斑成像
  • 批准号:
    7536407
  • 财政年份:
    2008
  • 资助金额:
    $ 27.01万
  • 项目类别:
Surface Myoelectric Control of Hand Prothetics
手部假肢的表面肌电控制
  • 批准号:
    7923789
  • 财政年份:
    2008
  • 资助金额:
    $ 27.01万
  • 项目类别:
Surface Myoelectric Control of Hand Prothetics
手部假肢的表面肌电控制
  • 批准号:
    7686721
  • 财政年份:
    2008
  • 资助金额:
    $ 27.01万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7646432
  • 财政年份:
    2006
  • 资助金额:
    $ 27.01万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7447886
  • 财政年份:
    2006
  • 资助金额:
    $ 27.01万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7223859
  • 财政年份:
    2006
  • 资助金额:
    $ 27.01万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7294932
  • 财政年份:
    2006
  • 资助金额:
    $ 27.01万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7882337
  • 财政年份:
    2006
  • 资助金额:
    $ 27.01万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7917750
  • 财政年份:
    2006
  • 资助金额:
    $ 27.01万
  • 项目类别:
qEP Analysis of Comatose Patients: Mutal Synchronicity
昏迷患者的 qEP 分析:相互同步性
  • 批准号:
    6787859
  • 财政年份:
    2004
  • 资助金额:
    $ 27.01万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.01万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 27.01万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 27.01万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 27.01万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 27.01万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 27.01万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 27.01万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 27.01万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 27.01万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 27.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了