Automated Seizure Detection Following Nerve Agent Exposure

神经毒剂暴露后的自动癫痫发作检测

基本信息

项目摘要

DESCRIPTION (provided by applicant): Seizures following a nerve agent (NA) attack induce a time-critical emergency which can lead to sudden death or severe morbidity. Survival is dependent upon early and aggressive therapy. Seizures may not be evident from physical examination, and emergency personnel typically cannot interpret the electroencephalogram. Thus, as noted in the RFA, there is a pressing need for automated EEG interpretation and detection of epileptiform activity. In order to respond to this need, we assembled an interdisciplinary team from Infinite Biomedical Technologies, LLC, the United States Army Medical Research Institute of Chemical Defense (USAMRICD), and the Johns Hopkins School of Medicine. Together, the team has broad experience with NA-induced neuropathology, clinical management of seizures, quantitative neurodiagnostics, and hardware design. Based on this experience, we propose the development of a portable system for automated seizure detection. It includes a wireless headband and a handheld device which features a Chemical Seizure Vector (CSV) algorithm. The CSV is a "digital fingerprint" based on 5 spectral and temporal analyses specifically selected to recognize seizure morphology. This combinatorial method creates a 5-dimensional vector to reliably classify and discriminate seizure waveforms. Noise-reduction and artifact rejection are incorporated both at the level of the individual algorithm and upon simultaneous consideration of the individual analyses in 5-dimensional space. During Phase I we will evaluate the ability of CSV to detect the presence of seizures. Given that it is not feasible to study nerve agent exposure in patients, we will employ two complementary models. First, we will use an established primate model which incorporates exposure to a nerve agent. Second, we will use a human model involving seizure patients of a non-NA-associated etiology. We will investigate the performance of the individual component algorithms and the combined CSV using Receiver Operator Characteristic (ROC) curves. The primary milestone for Phase I is creation of an optimal chemical seizure detection algorithm based on the analysis of the ROCs. Phase II of this Fast-track application involves further refinement of CSV to produce a three-level indicator. We will discriminate seizures (RED) from peri-ictal activity (YELLOW) and the normal EEG (GREEN). CSV will be tested in a prospective evaluation in the primate model and in human seizure patients. The technology will be packaged into a system which features a self-adhesive electrode headband and a handheld device. Finally, the entire system will be validated in a realistic setting during live chemical emergency drills. Nerve agent exposures are a serious threat and can cause brain injury and death. We will develop an automated system to diagnose EEG seizure activity in the brain to help care for attack victims.
描述(由申请人提供):神经毒剂(NA)攻击后的癫痫发作会引起时间紧迫的紧急情况,可能导致猝死或严重发病。生存取决于早期和积极的治疗。癫痫发作在体检中可能不明显,急救人员通常无法解释脑电图。因此,如RFA中所述,迫切需要自动EEG解释和癫痫样活动检测。为了满足这一需求,我们组建了一个跨学科团队,来自无限生物医学技术有限责任公司,美国陆军化学防御医学研究所(USAMRICD)和约翰霍普金斯医学院。该团队在NA诱导的神经病理学、癫痫发作的临床管理、定量神经诊断和硬件设计方面拥有丰富的经验。基于这一经验,我们建议开发一种便携式系统,用于自动检测癫痫发作。它包括一个无线头带和一个手持设备,该设备具有化学发作矢量(CSV)算法。CSV是一种基于5种光谱和时间分析的“数字指纹”,专门用于识别癫痫发作形态。该组合方法创建5维向量以可靠地分类和区分癫痫发作波形。噪声降低和伪影抑制被纳入在个人算法的水平,并在5维空间中的个人分析的同时考虑。在第一阶段,我们将评估CSV检测癫痫发作的能力。鉴于研究患者的神经毒剂暴露是不可行的,我们将采用两种互补的模型。首先,我们将使用一个已建立的灵长类动物模型,其中包括暴露于神经毒剂。其次,我们将使用一个涉及癫痫发作患者的非NA相关病因的人类模型。我们将使用受试者操作特征(ROC)曲线研究单个组件算法和组合CSV的性能。阶段I的主要里程碑是基于ROC分析创建最佳化学发作检测算法。这一快速通道应用的第二阶段涉及进一步完善CSV,以产生一个三级指标。我们将从发作周活动(黄色)和正常EEG(绿色)中区分癫痫发作(红色)。CSV将在灵长类动物模型和人类癫痫患者的前瞻性评价中进行测试。该技术将被封装到一个系统中,该系统具有自粘电极头带和手持设备。最后,整个系统将在现场化学应急演习中在现实环境中得到验证。神经毒剂暴露是一种严重的威胁,可导致脑损伤和死亡。我们将开发一个自动化系统来诊断大脑中的EEG癫痫活动,以帮助照顾攻击受害者。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID Lee SHERMAN其他文献

DAVID Lee SHERMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID Lee SHERMAN', 18)}}的其他基金

Laser Speckle Imaging of Brain Tumor Vasculature
脑肿瘤脉管系统的激光散斑成像
  • 批准号:
    7536407
  • 财政年份:
    2008
  • 资助金额:
    $ 55.87万
  • 项目类别:
Surface Myoelectric Control of Hand Prothetics
手部假肢的表面肌电控制
  • 批准号:
    7537333
  • 财政年份:
    2008
  • 资助金额:
    $ 55.87万
  • 项目类别:
Surface Myoelectric Control of Hand Prothetics
手部假肢的表面肌电控制
  • 批准号:
    7923789
  • 财政年份:
    2008
  • 资助金额:
    $ 55.87万
  • 项目类别:
Surface Myoelectric Control of Hand Prothetics
手部假肢的表面肌电控制
  • 批准号:
    7686721
  • 财政年份:
    2008
  • 资助金额:
    $ 55.87万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7447886
  • 财政年份:
    2006
  • 资助金额:
    $ 55.87万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7646432
  • 财政年份:
    2006
  • 资助金额:
    $ 55.87万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7223859
  • 财政年份:
    2006
  • 资助金额:
    $ 55.87万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7294932
  • 财政年份:
    2006
  • 资助金额:
    $ 55.87万
  • 项目类别:
Automated Seizure Detection Following Nerve Agent Exposure
神经毒剂暴露后的自动癫痫发作检测
  • 批准号:
    7917750
  • 财政年份:
    2006
  • 资助金额:
    $ 55.87万
  • 项目类别:
qEP Analysis of Comatose Patients: Mutal Synchronicity
昏迷患者的 qEP 分析:相互同步性
  • 批准号:
    6787859
  • 财政年份:
    2004
  • 资助金额:
    $ 55.87万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 55.87万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 55.87万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 55.87万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 55.87万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 55.87万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 55.87万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 55.87万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 55.87万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 55.87万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.87万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了