Complete Reducibility and Geometric Invariant Theory

完整的可归约性和几何不变量理论

基本信息

  • 批准号:
    EP/C542150/2
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

In this proposal we aim to study J.-P. Serre's notion of G-complete reducibility (G-cr) using tools from geometric invariant theory (GIT). In a recent joint paper by Bate, Martin and the author it was shown that Serre's concept of G-cr is equivalent to Richardson's notion of strong reductivity. This equivalence allowed us to use methods from GIT in the study of G-cr subgroups of reductive algebraic groups G such as the Hilbert-Mumford Theorem to derive new criteria for G-cr subgroups. The aim of the proposed research is to extend and deepen this geometric investigation.The general guiding principle of this work is to undertake a comprehensive study of the behaviour of G-cr subgroups under natural group-theoretic operations, such as taking normal subgroups, taking quotients, taking centralisers, taking normalisers, forming semi-direct products and applying group homomorphisms, etc. Although by earlier work some results are known, a systematic study is needed.Another general question we aim to address is the following: Let K,H, and G be reductive groups with K contained in H and H contained G. What conditions on K,H,G and the ground field that ensure that if K is G-cr, then K is H-cr, and vice versa? This involves extending several results form earlier joint work with Bate and Martin.We want to further investigate the connection between reductive paris and complete reducibility; this should be an effective replacement for characteristic restrictions in earlier work on G-cr subgroups. Also we want to develop some criteria for some converse results.Moreover, we intend to study further rationality properties of G-cr subgroups and generalisations of our results to non-connected reductive groups.In the context of his original building-theoretic approach J.-P. Serre observed that the notion of G-complete reducibility makes sense for semi-algebraic actions. We want to extend our earlier results to this setting.
在本提案中,我们的目标是研究j.p。Serre用几何不变量理论(GIT)的工具提出的g -完全可约性(G-cr)的概念。在Bate, Martin和作者最近的一篇联合论文中,证明了Serre的G-cr概念等价于Richardson的强还原性概念。这种等价性使我们能够使用GIT中的方法来研究G-cr子群,例如Hilbert-Mumford定理,从而推导出G-cr子群的新准则。提出的研究的目的是扩展和深化这种几何调查。本工作的总体指导原则是全面研究G-cr子群在自然群理论操作下的行为,如取正规子群、取商、取集中子群、取规范化子群、形成半直积和应用群同态等。虽然通过早期的工作已经知道了一些结果,但还需要进行系统的研究。我们要解决的另一个一般性问题是:设K、H和G是约化群,K包含在H中,H包含在G中,K、H、G和基场上的什么条件确保如果K是G-cr,那么K是H-cr,反之亦然?这涉及到扩展与贝特和马丁早期联合工作的几个结果。我们想进一步研究可约性和完全可约性之间的联系;这应该是对G-cr子组早期工作中的特征限制的有效替代。我们还想为一些相反的结果制定一些准则。此外,我们打算进一步研究G-cr子群的合理性性质,并将我们的结果推广到非连通约化群。在他最初的建筑理论方法的背景下。Serre观察到g -完全可约性的概念对半代数行为是有意义的。我们想把之前的结果扩展到这个场景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerhard Roehrle其他文献

Arrangements of ideal type are inductively free
理想类型的排列是无感应的
  • DOI:
    10.1142/s0218196719500267
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Cuntz;Gerhard Roehrle;Anne Schauenburg
  • 通讯作者:
    Anne Schauenburg
Complete reducibility for Lie subalgebras and semisimplification
李子代数的完全可归约性和半化简
  • DOI:
    10.1007/s40879-023-00710-4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    M. Bate;Sören Böhm;B. Martin;Gerhard Roehrle;Laura Voggesberger
  • 通讯作者:
    Laura Voggesberger
Edifices: building-like spaces associated to linear algebraic groups
建筑物:与线性代数群相关的类似建筑物的空间
Free multiderivations of connected subgraph arrangements
连通子图排列的自由多重导数
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Mucksch;Gerhard Roehrle;Sven Wiesner
  • 通讯作者:
    Sven Wiesner

Gerhard Roehrle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerhard Roehrle', 18)}}的其他基金

Complete Reducibility and Geometric Invariant Theory
完整的可归约性和几何不变量理论
  • 批准号:
    EP/C542150/1
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Prehomogeneous Spaces for Parabolic Group Actions in Reductive Algebraic Groups
还原代数群中抛物群作用的预齐次空间
  • 批准号:
    EP/D502381/1
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grant

相似海外基金

Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
  • 批准号:
    22K13904
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Clarification of specific reducibility of Noria for Au(III) and its application to selective Au(III) recovery process
澄清 Noria 对 Au(III) 的特定还原性及其在选择性 Au(III) 回收过程中的应用
  • 批准号:
    23K11498
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complete reducibility in algebraic groups
代数群的完全可约性
  • 批准号:
    EP/W000466/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Categorifying Turbulence in Borel Reducibility
Borel 还原性中的湍流分类
  • 批准号:
    EP/V050036/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Complete reducibility, geometric invariant theory, spherical buildings: a new approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的新方法
  • 批准号:
    19K14516
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Definable reducibility (A06)
可定义的还原性 (A06)
  • 批准号:
    196209432
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
Structure and reducibility of Operator Semigroups
算子半群的结构和可约性
  • 批准号:
    415133-2011
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Serre's notion of complete reducibility and geometric invariant theory
塞尔的完全可约性概念和几何不变量理论
  • 批准号:
    125049979
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Non Invasive 3D Assessment of the Reducibility of Scoliotic Trunk Deformities for an Effective Surgical Planning
对脊柱侧凸躯干畸形的还原性进行非侵入性 3D 评估,以制定有效的手术计划
  • 批准号:
    189946
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Complete Reducibility and Geometric Invariant Theory
完整的可归约性和几何不变量理论
  • 批准号:
    EP/C542150/1
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了