Dynamically Reconfigurable Hardware Architectures for Context-Based Statistical Compression of Visual and Data Content

用于基于上下文的视觉和数据内容统计压缩的动态可重构硬件架构

基本信息

  • 批准号:
    EP/D011639/1
  • 负责人:
  • 金额:
    $ 21.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The purpose of this work is to investigate algorithms and hardware architectures for context-based statistical lossless compression of visual and data content using dynamically reconfigurable hardware to support optimal modelling strategies for each data and compression type. Entropy coding of the modelling output will be performed using a statically configured arithmetic coding engine. The current trend of network convergence where visual and data content are transmitted along the same physical channel suggests a technology capable of delivering optimal compression ratios and fast adaptation to the nature of the content will become increasingly important. These are the two key concepts that will drive this research effort. Context-based statistical compression differs fundamentally from dictionary-based compression as used in popular algorithms such as the ZIP family and it is recognised as being able to offer superior compression ratios to these. However, this has been only achieved with complex software algorithms that require considerable amounts of memory capacity and have very low throughputs in the range of thousands of CPU cycles per byte. This means that power-hungry Pentium 4 class microprocessors running at GHz rates are needed to provide the required computing power to run these advanced statistical algorithms and even these CPUs will find difficult to support applications such as telemedicine where still images, video and scientific data would require lossless real-time compression with high bandwidths. Other applications such as data, video and image transmission in space require the performance to be achieved in an energy and silicon efficient platform. To achieve the demands set by these applications we propose the first universal lossless compression hardware core combining context-based variable-order statistical modelling and arithmetic coding. At present, there are no practical hardware realisations of these techniques, since no satisfactory solutions have yet been proposed for a viable architecture.
这项工作的目的是研究基于上下文的视频和数据内容的统计无损压缩的算法和硬件体系结构,使用动态可重新配置的硬件来支持每种数据和压缩类型的最佳建模策略。将使用静态配置的算术编码引擎来执行建模输出的熵编码。当前网络融合的趋势表明,能够提供最佳压缩比并快速适应内容性质的技术将变得越来越重要,其中视频和数据内容沿同一物理通道传输。这两个关键概念将推动这项研究工作。基于上下文的统计压缩从根本上不同于常用算法(如ZIP系列)中使用的基于词典的压缩,它被认为能够提供比这些算法更好的压缩比。然而,这只是通过复杂的软件算法实现的,这些算法需要相当大的内存容量,并且在每个字节数千个CPU周期范围内的吞吐量非常低。这意味着需要运行GHz速率的耗电奔腾4级微处理器来提供运行这些高级统计算法所需的计算能力,甚至这些CPU也很难支持远程医疗等应用程序,在这些应用程序中,静止图像、视频和科学数据需要高带宽的无损实时压缩。其他应用,如空间中的数据、视频和图像传输,需要在能源和硅高效平台上实现性能。为了满足这些应用的需求,我们提出了第一个结合基于上下文的变阶统计建模和算术编码的通用无损压缩硬件核。目前,这些技术还没有实际的硬件实现,因为还没有为可行的体系结构提出令人满意的解决方案。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algorithm-Architecture Matching for Signal and Image Processing
信号和图像处理的算法架构匹配
  • DOI:
    10.1007/978-90-481-9965-5_1
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen X
  • 通讯作者:
    Chen X
Lossless video compression based on backward adaptive pixel-based fast motion estimation
基于后向自适应像素快速运动估计的无损视频压缩
  • DOI:
    10.1016/j.image.2012.06.004
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen X
  • 通讯作者:
    Chen X
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Nunez-Yanez其他文献

Jose Nunez-Yanez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Nunez-Yanez', 18)}}的其他基金

Heterogeneous computing platforms for resource-aware video and data analytics (HOPWARE)
用于资源感知视频和数据分析的异构计算平台 (HOPWARE)
  • 批准号:
    EP/V040863/1
  • 财政年份:
    2021
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Research Grant
ENergy Efficient Adaptive Computing with multi-grain heterogeneous architectures (ENEAC)
具有多颗粒异构架构的节能自适应计算(ENEAC)
  • 批准号:
    EP/N002539/1
  • 财政年份:
    2016
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Research Grant
Energy Proportional Computing With Heterogeneous and Reconfigurable Processors (ENPOWER)
使用异构和可重构处理器的能量比例计算 (ENPOWER)
  • 批准号:
    EP/L00321X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Research Grant
Energy Efficient Networks-on-Chip for Dynamically Reconfigurable Computing Platforms.
用于动态可重构计算平台的节能片上网络。
  • 批准号:
    EP/E062164/1
  • 财政年份:
    2007
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Research Grant

相似海外基金

Development of hardware design system for high-speed dynamically reconfigurable devices
高速动态可重构器件硬件设计系统开发
  • 批准号:
    23K11032
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Securing Reconfigurable Hardware Accelerator for Machine Learning: Threats and Defenses
职业:保护用于机器学习的可重新配置硬件加速器:威胁与防御
  • 批准号:
    2239672
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Continuing Grant
Enhancing Hardware Compilation for Reconfigurable Architectures using Machine Learning and Cloud Computing
使用机器学习和云计算增强可重构架构的硬件编译
  • 批准号:
    RGPIN-2017-04232
  • 财政年份:
    2021
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Grants Program - Individual
Embedded Supercomputing with Reconfigurable Hardware
具有可重构硬件的嵌入式超级计算
  • 批准号:
    RGPIN-2016-06665
  • 财政年份:
    2021
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing Hardware Compilation for Reconfigurable Architectures using Machine Learning and Cloud Computing
使用机器学习和云计算增强可重构架构的硬件编译
  • 批准号:
    RGPIN-2017-04232
  • 财政年份:
    2020
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Grants Program - Individual
SaTC: CORE: Small: Language Abstractions for Reconfigurable Hardware Monitors on Manycore Architectures
SaTC:CORE:Small:众核架构上可重新配置硬件监视器的语言抽象
  • 批准号:
    1936794
  • 财政年份:
    2020
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: SMALL: Autonomously Reconfigurable Hardware-Reduced Wideband Transceivers for Efficient Passive-Active Spectrum Coexistence
合作研究:SWIFT:SMALL:自主可重构硬件精简宽带收发器,实现高效无源-有源频谱共存
  • 批准号:
    2030234
  • 财政年份:
    2020
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
Embedded Supercomputing with Reconfigurable Hardware
具有可重构硬件的嵌入式超级计算
  • 批准号:
    RGPIN-2016-06665
  • 财政年份:
    2020
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: SWIFT: SMALL: Autonomously Reconfigurable Hardware-Reduced Wideband Transceivers for Efficient Passive-Active Spectrum Coexistence
合作研究:SWIFT:SMALL:自主可重构硬件精简宽带收发器,实现高效无源-有源频谱共存
  • 批准号:
    2030250
  • 财政年份:
    2020
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
CNS Core: Small: Software-Hardware Reconfigurable Systems for Mobile Millimeter-Wave Networks
CNS 核心:小型:移动毫米波网络的软硬件可重构系统
  • 批准号:
    1910853
  • 财政年份:
    2019
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了