Brain-Inspired Neuronal Model of Attention and Memory
受大脑启发的注意力和记忆神经元模型
基本信息
- 批准号:EP/D036364/1
- 负责人:
- 金额:$ 19.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Attention is necessary and vital for living organisms due to the limited processing capability of the visual system which precludes the rapid analysis of the whole visual scene. Selective visual attention is a cognitive process that allows a living organism to extract from the incoming visual information the part that is most important at a given moment and that should be processed in more detail. For example, detailed processing of the extracted information can include novelty detection and allocation of a novel object to memory.In this project a large-scale brain-inspired model of hierarchically organised spiking neurons will be developed, that solves the problem of consecutive selection of objects by combining object oriented attention, memory, and novelty detection. Since we believe that the brain does not invent a special processing mechanism for each cognitive function but adapts similar mechanisms for a particular type of processing, it is a challenge to develop a model based on a small set of general principles of information processing (e.g. synchronisation, adaptation of natural frequencies, resonance amplitude increase). We believe that these theoretical principles are the key to the performance of the biological brain and within the proposed research will be implemented for the first time in combined model of attention and memory. Such developments offer great potential, both in shedding fresh light on the basic mechanisms underpinning information processing in the brain and in the design of a new generation of computational devices, cognitive robots, etc.
由于视觉系统有限的处理能力,排除了对整个视觉场景的快速分析,因此注意力对于生物体是必要的和至关重要的。选择性视觉注意是一种认知过程,允许生物体从传入的视觉信息中提取在给定时刻最重要的部分,并且应该更详细地处理。例如,提取的信息的详细处理可以包括新奇检测和分配一个新的对象到memory.In这个项目将开发一个大规模的大脑启发模型的分层组织尖峰神经元,解决了对象的连续选择问题相结合的面向对象的注意,记忆,和新奇检测。由于我们相信大脑不会为每种认知功能发明一种特殊的处理机制,而是为特定类型的处理适应类似的机制,因此开发一个基于信息处理的一小部分一般原则(例如同步,自然频率的适应,共振幅度增加)的模型是一个挑战。我们相信,这些理论原则是生物大脑性能的关键,并且在拟议的研究中将首次在注意力和记忆力的组合模型中实施。这些发展提供了巨大的潜力,无论是在揭示大脑信息处理的基本机制,还是在设计新一代计算设备,认知机器人等方面。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Forecasting the 2005 General Election: A Neural Network Approach
预测 2005 年大选:神经网络方法
- DOI:10.1111/j.1467-856x.2005.00182.x
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Borisyuk R
- 通讯作者:Borisyuk R
International symposium: theory and neuroinformatics in research related to deep brain stimulation.
国际研讨会:脑深部刺激相关研究的理论和神经信息学。
- DOI:10.1586/17434440.4.5.587
- 发表时间:2007
- 期刊:
- 影响因子:3.1
- 作者:Borisyuk R
- 通讯作者:Borisyuk R
Selective Attention Model of Moving Objects
- DOI:10.1007/978-3-540-87559-8_37
- 发表时间:2008-09
- 期刊:
- 影响因子:0
- 作者:R. Borisyuk;D. Chik;Y. Kazanovich
- 通讯作者:R. Borisyuk;D. Chik;Y. Kazanovich
Stochasticity and functionality of neural systems: Mathematical modelling of axon growth in the spinal cord of tadpole
- DOI:10.1016/j.biosystems.2008.03.012
- 发表时间:2008-07-01
- 期刊:
- 影响因子:1.6
- 作者:Borisyuk, Roman;Cooke, Tom;Roberts, Alan
- 通讯作者:Roberts, Alan
Model of the tadpole spinal cord: The interplay of deterministic and stochastic processes in development of specialised neural circuit
蝌蚪脊髓模型:特定神经回路发育中确定性过程和随机过程的相互作用
- DOI:10.3182/20090622-3-uk-3004.00006
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Borisyuk R
- 通讯作者:Borisyuk R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Borisyuk其他文献
Modeling perceptual multi-stability with Hodgkin-Huxley neurons
- DOI:
10.1186/1471-2202-9-s1-p152 - 发表时间:
2008-07-11 - 期刊:
- 影响因子:2.300
- 作者:
David Chik;Roman Borisyuk - 通讯作者:
Roman Borisyuk
Spiking neural network models for memorizing sequences with forward and backward recall
- DOI:
10.1186/1471-2202-10-s1-p211 - 发表时间:
2009-07-13 - 期刊:
- 影响因子:2.300
- 作者:
David Chik;Roman Borisyuk - 通讯作者:
Roman Borisyuk
A network model of neural activity in essential tremor
- DOI:
10.1186/1471-2202-16-s1-p7 - 发表时间:
2015-12-04 - 期刊:
- 影响因子:2.300
- 作者:
Nada Yousif;Michael Mace;Nicola Pavese;Roman Borisyuk;Dipankar Nandi;Peter Bain - 通讯作者:
Peter Bain
The dynamic separation of pallidal neurons into anti-phase oscillatory groups under Parkinsonian conditions in a computational model
- DOI:
10.1186/1471-2202-15-s1-o18 - 发表时间:
2014-07-21 - 期刊:
- 影响因子:2.300
- 作者:
Robert Merrison-Hort;Roman Borisyuk - 通讯作者:
Roman Borisyuk
The functional significance of fasciculation and repulsion in a computational model of axon growth
- DOI:
10.1186/1471-2202-16-s1-p17 - 发表时间:
2015-12-18 - 期刊:
- 影响因子:2.300
- 作者:
Robert Merrison-Hort;Oliver Davis;Roman Borisyuk - 通讯作者:
Roman Borisyuk
Roman Borisyuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Borisyuk', 18)}}的其他基金
Life and Physical Sciences interface: Whole animal mathematical and computational modelling of motion
生命与物理科学接口:整个动物运动的数学和计算模型
- 批准号:
BB/X005038/1 - 财政年份:2023
- 资助金额:
$ 19.77万 - 项目类别:
Research Grant
Dynamic network reconfiguration at the transition between motor programs
运动程序之间转换时的动态网络重新配置
- 批准号:
BB/T002352/1 - 财政年份:2019
- 资助金额:
$ 19.77万 - 项目类别:
Research Grant
Cross-modality integration of sensory signals leading to initiation of locomotion
感觉信号的跨模态整合导致运动的启动
- 批准号:
BB/L000814/1 - 财政年份:2014
- 资助金额:
$ 19.77万 - 项目类别:
Research Grant
A neuronal network generating flexible locomotor behaviour in a simple vertebrate: studies on function and embryonic self-assembly
在简单脊椎动物中产生灵活运动行为的神经元网络:功能和胚胎自组装的研究
- 批准号:
BB/G006369/1 - 财政年份:2009
- 资助金额:
$ 19.77万 - 项目类别:
Research Grant
相似海外基金
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
- 批准号:
2337540 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
- 批准号:
10109981 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
EU-Funded
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
- 批准号:
2342253 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Standard Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
- 批准号:
24K15089 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
- 批准号:
DP240102315 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Discovery Projects
Gecko Inspired Autonomous Fabrication Of Programmable Two-dimensional Quantum Materials
壁虎启发可编程二维量子材料的自主制造
- 批准号:
EP/Y026284/1 - 财政年份:2024
- 资助金额:
$ 19.77万 - 项目类别:
Research Grant