High-Throughput Electrochemistry - a new approach to the rapid development of modified carbon electrodes
高通量电化学——快速开发改性碳电极的新方法
基本信息
- 批准号:EP/D038588/1
- 负责人:
- 金额:$ 64.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electrochemistry is widely used in the world around us from batteries of different types both large and small, through the industrial processes used to make chlorine and sodium hydroxide and methods to deposit metals for decorative effects and to make microchips, to the portable devices used several times a day by diabetics to measure their blood glucose. Electrochemical reactions occur at surfaces and one of their great advantages is that the voltage applied to the electrode is used directly to drive the chemical reaction and the current that flows is a direct measure of the speed of the reaction. In many cases the challenge is to design the surface of the electrode to carry out a particular chemical reaction so that we can exploit these advantages. At bare metal, or carbon, surfaces reactions occur by the transfer of electrons one at a time. As a result in many reactions that we would like to carry out unstable intermediates are formed which then undergo further reactions that lead to fouling of the electrode surface and the production of undesirable side products. A way to overcome this problem is to modify the electrode surface by attaching molecules which act as intermediates or mediators in the overall reaction. The reaction at the electrode surface then occurs by first transferring the electrons one at a time to (or from) the mediator attached to the electrode surface. Then, in a second step these mediators react with molecules in solution, thus catalysing the reaction that we wish to carry out at the electrode. The big advantage of this approach is that, in principle, we can select the molecules we choose to attach to the surface of the electrode so that they exchange electrons rapidly with the electrode and react selectively with the molecules in solution - we can design the electrode surface for the reaction we want. The challenge is to find the right molecules and the right way to attach them to the electrode surface. For the last 20 years or so efforts to do this have used inspired guesswork to pick one or two molecules to try and then prepared electrode surfaces with these molecules attached. In this project we will tackle this problem in a much more effective way. We will synthesise hundreds or thousands of related, but each slightly different, molecules on electrode surfaces and then screen these to find the best for the particular reactions we are interested in. To do this we will develop new ways of preparing the electrode surfaces and new ways to screen the surfaces for activity. We have chosen three particular reactions for our study. The first is the oxidation of NADH, a common coenzyme. There are hundreds of enzymes in nature which use NADH. If we can find good electrodes for the oxidation of NADH we can then use these different enzymes to make sensors and in fuel cells. In particular a good modified electrode for NADH oxidation could be important in developing better sensors to allow diabetics to measure their blood glucose. The second reaction is the oxidation of ascorbate (vitamin C). Ascorbate is an important possible interference when trying to oxidise NADH because ascorbate is present in blood and many biological samples. Therefore for the NADH electrodes we want to find modified surfaces at which NADH reacts much better than ascorbate. On the other hand ascorbate is also important in its own right as we need to be able to measure its concentration in drinks and foodstuffs so we will also be looking for modified electrodes which are very good for ascorbate oxidation. The final target is dopamine, a molecule involved in signalling between neurones in the brain. Many of the molecules which catalyse the reaction of NADH also catalyse the oxidation of dopamine. We will screen the different molecules we produce to see if any are especially good for the detection of dopamine so that we can produce minute electrodes that can be used to measure dopamine in studies of the brain.
电化学在我们周围的世界中被广泛使用,从不同类型的大小电池,通过用于制造氯和氢氧化钠的工业过程以及用于装饰效果的存款金属和制造微芯片的方法,到糖尿病患者每天使用几次测量血糖的便携式设备。电化学反应发生在表面,其最大优点之一是施加到电极的电压直接用于驱动化学反应,并且流动的电流是反应速度的直接测量。在许多情况下,挑战在于设计电极表面以进行特定的化学反应,以便我们可以利用这些优势。在裸露的金属或碳上,表面反应通过电子的转移而发生,每次一个。结果,在我们希望进行的许多反应中,形成不稳定的中间体,其然后经历导致电极表面结垢和产生不期望的副产物的进一步反应。克服这个问题的一种方法是通过附着在整个反应中充当中间体或介体的分子来修饰电极表面。然后,通过首先将电子一次一个地转移到附着于电极表面的介体(或从附着于电极表面的介体转移一个电子)来发生电极表面处的反应。然后,在第二步中,这些介质与溶液中的分子反应,从而催化我们希望在电极上进行的反应。这种方法的一大优点是,原则上,我们可以选择我们选择的分子附着在电极表面,使它们与电极快速交换电子,并选择性地与溶液中的分子反应-我们可以为我们想要的反应设计电极表面。挑战在于找到正确的分子以及将它们附着在电极表面的正确方法。在过去的20年左右的时间里,人们一直在努力做到这一点,他们用灵感来猜测,选择一两个分子来尝试,然后用这些分子来制备电极表面。在这个项目中,我们将以更有效的方式解决这个问题。我们将在电极表面合成数百或数千个相关的,但每个都略有不同的分子,然后筛选这些分子,以找到最适合我们感兴趣的特定反应的分子。为了做到这一点,我们将开发新的方法来准备电极表面和新的方法来筛选表面的活动。我们选择了三种特殊的反应进行研究。第一个是氧化NADH,一种常见的辅酶。自然界中有数百种使用NADH的酶。如果我们能找到好的电极来氧化NADH,我们就可以用这些不同的酶来制造传感器和燃料电池。特别是一个良好的修饰电极的NADH氧化可能是重要的,在开发更好的传感器,让糖尿病患者测量他们的血糖。第二个反应是抗坏血酸(维生素C)的氧化。抗坏血酸是一个重要的可能的干扰时,试图氧化NADH,因为抗坏血酸存在于血液和许多生物样品。因此,对于NADH电极,我们希望找到修饰的表面,在该表面上,NADH的反应比抗坏血酸盐好得多。另一方面,抗坏血酸本身也很重要,因为我们需要能够测量其在饮料和食品中的浓度,因此我们也将寻找对抗坏血酸氧化非常有利的改性电极。最后一个目标是多巴胺,一种参与大脑神经元之间信号传递的分子。许多催化NADH反应的分子也催化多巴胺的氧化。我们将筛选我们生产的不同分子,看看是否有特别适合检测多巴胺的分子,这样我们就可以生产微小的电极,用于测量大脑研究中的多巴胺。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Covalent modification of glassy carbon surfaces by using electrochemical and solid-phase synthetic methodologies: application to bi- and trifunctionalisation with different redox centres.
使用电化学和固相合成方法对玻璃碳表面进行共价修饰:应用于不同氧化还原中心的双官能化和三官能化。
- DOI:10.1002/chem.200901135
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Chrétien JM
- 通讯作者:Chrétien JM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Bartlett其他文献
Philip Bartlett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Bartlett', 18)}}的其他基金
Correlative Raman, SEM and EDX for operando electrochemistry research
用于操作电化学研究的相关拉曼、SEM 和 EDX
- 批准号:
EP/V007629/1 - 财政年份:2021
- 资助金额:
$ 64.61万 - 项目类别:
Research Grant
ADEPT - Advanced Devices by ElectroPlaTing
ADEPT - 电镀先进设备
- 批准号:
EP/N035437/1 - 财政年份:2016
- 资助金额:
$ 64.61万 - 项目类别:
Research Grant
Complex Nanostructures by Supercritical Fluid Electrodeposition
超临界流体电沉积复杂纳米结构
- 批准号:
EP/I033394/1 - 财政年份:2011
- 资助金额:
$ 64.61万 - 项目类别:
Research Grant
Plasmonic Interactions in Nano-Structured Voids
纳米结构空隙中的等离子体相互作用
- 批准号:
EP/F05534X/1 - 财政年份:2009
- 资助金额:
$ 64.61万 - 项目类别:
Research Grant
Adventurous Chemistry - A New Generation of Nanoarchitectured Surfaces
冒险化学——新一代纳米结构表面
- 批准号:
EP/D052815/1 - 财政年份:2006
- 资助金额:
$ 64.61万 - 项目类别:
Research Grant
相似海外基金
Development of new electrochemistry based on synthesis of hydroxide ion conductive ionic liquids
基于氢氧离子导电离子液体合成的新型电化学发展
- 批准号:
20K21094 - 财政年份:2020
- 资助金额:
$ 64.61万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Investigations Into the Development of New Methodologies for Organic Electrochemistry
有机电化学新方法开发的研究
- 批准号:
2092473 - 财政年份:2018
- 资助金额:
$ 64.61万 - 项目类别:
Studentship
A new alloy design concept for high-corrosion resistant steels based on micro-electrochemistry of local dissolution and repassivation
基于局部溶解和再钝化微电化学的高耐腐蚀钢新合金设计理念
- 批准号:
17H01331 - 财政年份:2017
- 资助金额:
$ 64.61万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Application of next generation electrochemistry and imaging methods to deliver new insights for the care of oral cavity
应用下一代电化学和成像方法为口腔护理提供新见解
- 批准号:
1642624 - 财政年份:2015
- 资助金额:
$ 64.61万 - 项目类别:
Studentship
New functions of nanomaterials investigated by using solid-state electrochemistry
利用固态电化学研究纳米材料的新功能
- 批准号:
26288034 - 财政年份:2014
- 资助金额:
$ 64.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New Methods in Scanning Electrochemical Microscopy in the Study of Electrocalysis and Single Nanoparticle Electrochemistry
扫描电化学显微镜在电催化和单纳米粒子电化学研究中的新方法
- 批准号:
0808927 - 财政年份:2008
- 资助金额:
$ 64.61万 - 项目类别:
Continuing Grant
Retro-Bingel and Isomerization Reactions of Fullerene Derivatives via Electrochemistry: Synthesis, Mechanisms, and New Materials
富勒烯衍生物的电化学逆宾格尔和异构化反应:合成、机理和新材料
- 批准号:
0296120 - 财政年份:2001
- 资助金额:
$ 64.61万 - 项目类别:
Continuing Grant
Retro-Bingel and Isomerization Reactions of Fullerene Derivatives via Electrochemistry: Synthesis, Mechanisms, and New Materials
富勒烯衍生物的电化学逆宾格尔和异构化反应:合成、机理和新材料
- 批准号:
9816503 - 财政年份:1999
- 资助金额:
$ 64.61万 - 项目类别:
Continuing Grant
New Development of Organic Electrochemistry
有机电化学新进展
- 批准号:
05235101 - 财政年份:1993
- 资助金额:
$ 64.61万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
A New Area in Organic Electrochemistry-Electrode Processes in Peculier Electrode Interfacial Reaction Fields-
有机电化学新领域-特殊电极界面反应场中的电极过程-
- 批准号:
04303007 - 财政年份:1992
- 资助金额:
$ 64.61万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)