Crystallization: The Future is Controllable

结晶:未来可控

基本信息

  • 批准号:
    EP/D070228/1
  • 负责人:
  • 金额:
    $ 80.44万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

Crystallization is one of the most important processes for the preparation and production of solid materials, including pharmaceuticals and speciality products; over 70% of solids are processed and utilized in their solid forms. Despite this prominence, the crystallization area is arguably one in which the gap between potential and realised goals is widest. Biominerals, such as bones, shells and teeth, exhibit far superior properties than their synthetic counterparts, and yet it should be possible to improve on nature's design strategies since we are not constrained to processing at ambient temperatures and pressures. Substantial improvements in this area are urgently required for the production of crystals with well-defined size, shape and structure that are so necessary for emerging nanotechnologies. Improvements can only be realised through better control over the two processes comprising crystallization: nucleation and growth. Nucleation describes the initial stage of crystallization, whereby the first stable nuclei of the crystallizing phase are formed, whilst crystal growth considers the growth of these stable nuclei to larger dimensions. The aims of this proposal are two-fold. Firstly to perform fundamental studies on model systems to show how crystallization can be controlled at every stage and length scale, and secondly the implementation of these new advances into more complex systems to provide desirable outcomes. These include the production of crystals with well-defined size and shape, and the production of improved bone mimics. We intend to show how controlling crystallization can lead to the production of materials with vastly improved properties, which will ultimately rival those of biominerals.This work will involve the exploitation of key recent discoveries by Dr Cooper. In particular, Dr Cooper has pioneered the use of tunable nucleating systems to provide unprecedented control over nucleation rates. These results are accomplished by using emulsions, which are mixtures of oil droplets in water, or water droplets in oil. Normally, after mixing oil and water together, the two rapidly separate into a layer of oil on top of the water. However, if you add additives, known as surfactants, the small oil droplets can be stabilized and an emulsion is formed, like milk. We use special surfactants in our emulsions that promote nucleation, but only in a limited temperature regime, so that we can effectively switch crystallization on and off. This means we can obtain far greater control over the crystal size and shape, and the rate at which crystals are formed. Our systems can also be used to deliver anomalous effects. For instance, it is widely known that crystallization can occur on cooling a solution. This can be demonstrated readily by dissolving as much sugar as possible in hot water, and then letting the water cool. Using our systems, however, we can achieve crystallization on both heating and cooling.In the crystal growth field, we have used emulsions to create unusual crystal morphologies including porous crystals and crystals with intricate shapes resembling feathers and woven cloth. Such intricately-shaped crystals are normally only seen in biominerals, such as the skeletons produced by sea urchins. These effects are achieved by using oil droplets that adhere onto the growing crystal. If the crystal grows completely around the oil droplets, porous crystals can be produced. The intricately shaped crystals develop if crystal growth proceeds only on each side of the droplets, so that many crystal offshoots grow from the main crystal. The ability to produce such intricate morphologies from simple systems illustrates the effectiveness of crystal growth regulation. The holistic combination of tunable nucleation and growth inhibition via droplet adhesion will help provide the improved crystallization control necessary to achieve superior crystalline materials.
结晶是制备和生产固体材料(包括药品和特种产品)的最重要工艺之一;超过70%的固体以固体形式加工和利用。尽管如此突出,结晶领域可以说是潜在目标和实现目标之间差距最大的领域。生物矿物,如骨骼、贝壳和牙齿,表现出比合成矿物优越得多的上级性能,但由于我们不限于在环境温度和压力下加工,因此应该有可能改进自然界的设计策略。迫切需要在这一领域进行实质性改进,以生产具有明确尺寸、形状和结构的晶体,这对新兴纳米技术是如此必要。改进只能通过更好地控制包括结晶的两个过程来实现:成核和生长。成核描述了结晶的初始阶段,由此形成结晶相的第一稳定核,而晶体生长考虑这些稳定核向更大尺寸的生长。这项建议有两个目的。首先,对模型系统进行基础研究,以展示如何在每个阶段和长度尺度上控制结晶,其次,将这些新进展应用于更复杂的系统,以提供理想的结果。这些包括生产具有明确尺寸和形状的晶体,以及生产改进的骨模拟物。我们打算展示如何控制结晶可以导致生产的材料具有极大的改善性能,这将最终竞争对手的生物矿物质。这项工作将涉及利用库珀博士最近的关键发现。特别是,库珀博士率先使用可调成核系统,以提供前所未有的控制成核率。这些结果是通过使用乳液来实现的,乳液是油滴在水中或水滴在油中的混合物。通常情况下,在油和水混合在一起后,两者迅速分离成水面上的一层油。然而,如果你添加添加剂,称为表面活性剂,小油滴可以稳定和乳液形成,像牛奶。我们在乳液中使用特殊的表面活性剂来促进成核,但仅限于有限的温度范围,因此我们可以有效地开启和关闭结晶。这意味着我们可以更好地控制晶体的大小和形状,以及晶体形成的速度。我们的系统也可以用来提供异常效果。例如,众所周知,结晶可以在冷却溶液时发生。这可以通过将尽可能多的糖溶解在热水中,然后让水冷却来证明。然而,使用我们的系统,我们可以在加热和冷却的情况下实现结晶。在晶体生长领域,我们使用乳液创造了不寻常的晶体形态,包括多孔晶体和具有复杂形状的晶体,如羽毛和编织布。这种形状复杂的晶体通常只在生物矿物中看到,例如海胆产生的骨骼。这些效果是通过使用粘附在生长晶体上的油滴来实现的。如果晶体完全围绕油滴生长,则可以产生多孔晶体。如果晶体生长仅在液滴的每一侧进行,则会形成形状复杂的晶体,因此许多晶体分支从主晶体生长。从简单系统中产生如此复杂形态的能力说明了晶体生长调节的有效性。通过液滴粘附的可调成核和生长抑制的整体组合将有助于提供获得上级结晶材料所需的改进的结晶控制。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanographite Synthesized from Acidified Sucrose Microemulsions under Ambient Conditions
  • DOI:
    10.1021/acs.cgd.5b01753
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Hargreaves, Natasha J.;Cooper, Sharon J.
  • 通讯作者:
    Cooper, Sharon J.
Crystallization of Mefenamic Acid from Dimethylformamide Microemulsions: Obtaining Thermodynamic Control through 3D Nanoconfinement
  • DOI:
    10.3390/cryst1030195
  • 发表时间:
    2011-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Nicholson;S. J. Cooper
  • 通讯作者:
    C. Nicholson;S. J. Cooper
Nonclassical Crystallization of Dipicolinic Acid in Microemulsions
微乳液中吡啶二羧酸的非经典结晶
  • DOI:
    10.1021/cg501147j
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Chen C
  • 通讯作者:
    Chen C
Stable Polymorphs Crystallized Directly under Thermodynamic Control in Three-Dimensional Nanoconfinement: A Generic Methodology
三维纳米限制中热力学控制下直接结晶的稳定多晶型物:通用方法
  • DOI:
    10.1021/cg101200f
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Nicholson C
  • 通讯作者:
    Nicholson C
Crystallization - Science and Technology
结晶-科学技术
  • DOI:
    10.5772/47977
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cooper S
  • 通讯作者:
    Cooper S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharon Cooper其他文献

Sharon Cooper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sharon Cooper', 18)}}的其他基金

Ocean Sciences for Rural Communities via Informal Science Education
通过非正式科学教育为农村社区提供海洋科学
  • 批准号:
    2247075
  • 财政年份:
    2022
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Alliance-Building Offshore to Achieve Resilience and Diversity (All-ABOARD)
EAGER:协作研究:建立海上联盟以实现弹性和多样性(All-ABOARD)
  • 批准号:
    2035093
  • 财政年份:
    2020
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Standard Grant
Collaborative Proposal: GP-IMPACT: Ambassadors for STEM Training to Enhance Participation (A-STEP)
合作提案:GP-IMPACT:STEM 培训大使以提高参与度 (A-STEP)
  • 批准号:
    1801634
  • 财政年份:
    2018
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Standard Grant
GP-IMPACT: Science, Technology, Engineering and Math Student Experiences Aboard Ships (STEMSEAS)
GP-IMPACT:科学、技术、工程和数学学生在船上的体验 (STEMSEAS)
  • 批准号:
    1701168
  • 财政年份:
    2017
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Standard Grant
Ocean Sciences for Rural Communities via Informal Science Education
通过非正式科学教育为农村社区提供海洋科学
  • 批准号:
    1515856
  • 财政年份:
    2015
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Continuing Grant
Ship To Shore Science, The R/V JOIDES Resolution As A Platform For Learning
船到岸科学,R/V JOIDES 决议作为学习平台
  • 批准号:
    1114678
  • 财政年份:
    2011
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Standard Grant

相似海外基金

Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
  • 批准号:
    FT230100021
  • 财政年份:
    2025
  • 资助金额:
    $ 80.44万
  • 项目类别:
    ARC Future Fellowships
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Continuing Grant
Securing the Future: Inclusive Cybersecurity Education for All
确保未来:全民包容性网络安全教育
  • 批准号:
    2350448
  • 财政年份:
    2024
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: Chironomid Bioturbation at Future High Temperature Scenarios and its Effect on Nutrient Fluxes and Bacterial Activity
NSF 生物学博士后奖学金:未来高温场景下的摇蚊生物扰动及其对营养通量和细菌活性的影响
  • 批准号:
    2305738
  • 财政年份:
    2024
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Fellowship Award
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Standard Grant
Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
  • 批准号:
    DP240100938
  • 财政年份:
    2024
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Discovery Projects
Cities as transformative agents for a climate-safe future
城市是气候安全未来的变革推动者
  • 批准号:
    FL230100021
  • 财政年份:
    2024
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Australian Laureate Fellowships
Cloud immersion and the future of tropical montane forests
云沉浸和热带山地森林的未来
  • 批准号:
    EP/Y027736/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Fellowship
Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
  • 批准号:
    EP/Y032004/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Research Grant
International Centre-to-Centre Collaboration: New catalysts for acetylene processes enabling a sustainable future
国际中心间合作:乙炔工艺的新型催化剂实现可持续的未来
  • 批准号:
    EP/Z531285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.44万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了