Random planar curves and conformal field theory
随机平面曲线和共形场论
基本信息
- 批准号:EP/D070643/1
- 负责人:
- 金额:$ 40.07万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Random fractal objects occur all around us. Examples are clouds, the shapes of coastlines, a head of cauliflower. They have the properties of being self-similar: if we take a picture of part of a cloud, choose just part of that picture and then blow it up to the size of the original, we can't say which one was in fact the original; and random: that is no two clouds look exactly the same although they are all obviously clouds. This example also illustrates a fundamental property of fractals in nature, as opposed to mathematical ones: we can in fact tell the pictures apart by the graininess of the photo: all physical fractals have some microscopic length scale. Unfortunately, although we know the equations which describe clouds, they are very difficult to analyse. Somewhat simpler examples occur in the physics of critical behaviour, for example magnets. If we look at a magnet closely enough, we see the individual atoms, each like a little magnet, or spin, regularly arranged on a regular lattice but pointing in random directions. However they form clusters, within which all the spins point the same way. In two dimensions the boundaries of these clusters are curves. At the critical temperature, just when the material becomes ferromagnetic, these curves are believed to be fractal, with a graininess given by the lattice. Physicists have, for the last 20 years, had a good theory of these systems, called conformal field theory (CFT). (It actually has applications in other branches of physics like string theory.) However it is not mathematically rigorous and in most cases no one has proved that it actually describes these lattice models. More recently, mathematicians have developed a theory called stochastic Loewner evolution (SLE) which describes the curves directly as mathematical fractals. It is the purpose of the proposed research to establish the full connection between CFT and SLE, as well as showing that some of the curves in these lattice models are in fact described by SLE if we ignore the graininess. Only then will we have a complete theory.
随机分形物体发生在我们周围。例如云、海岸线的形状、花椰菜的头。它们具有自相似的特性:如果我们拍一张云的一部分的照片,只选择该照片的一部分,然后将其放大到原图的大小,我们就不能说哪一张实际上是原图;随机:即没有两朵云看起来完全相同,尽管它们显然都是云。这个例子还说明了分形在自然界中的一个基本属性,而不是数学分形:事实上,我们可以通过照片的颗粒度来区分图片:所有物理分形都具有一定的微观长度尺度。不幸的是,尽管我们知道描述云的方程,但它们很难分析。一些更简单的例子出现在关键行为的物理学中,例如磁铁。如果我们足够仔细地观察磁铁,我们会看到单个原子,每个原子都像一个小磁铁或旋转,规则地排列在规则的晶格上,但指向随机的方向。然而,它们形成簇,其中所有自旋都指向相同的方向。在二维中,这些簇的边界是曲线。在临界温度下,当材料变成铁磁性时,这些曲线被认为是分形的,具有由晶格给出的颗粒度。在过去的 20 年里,物理学家对这些系统有了一个很好的理论,称为共形场论 (CFT)。 (它实际上在弦理论等物理学的其他分支中也有应用。)然而,它在数学上并不严格,并且在大多数情况下,没有人证明它确实描述了这些晶格模型。最近,数学家发展了一种称为随机勒纳演化(SLE)的理论,它将曲线直接描述为数学分形。本研究的目的是建立 CFT 和 SLE 之间的完整联系,并表明如果我们忽略颗粒度,这些晶格模型中的一些曲线实际上是由 SLE 描述的。只有这样我们才有一个完整的理论。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Twist operator correlation functions in O ( n ) loop models
O(n)循环模型中的扭曲算子相关函数
- DOI:10.1088/1751-8113/42/23/235001
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Simmons J
- 通讯作者:Simmons J
General solution of an exact correlation function factorization in conformal field theory
共形场论中精确相关函数分解的通解
- DOI:10.48550/arxiv.0907.3879
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Simmons J
- 通讯作者:Simmons J
Complete conformal field theory solution of a chiral six-point correlation function
手性六点相关函数的完整共形场论解
- DOI:10.48550/arxiv.1103.2458
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Simmons J
- 通讯作者:Simmons J
Factorization of percolation density correlation functions for clusters touching the sides of a rectangle
接触矩形边的簇的渗透密度相关函数的因式分解
- DOI:10.48550/arxiv.0811.3080
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Simmons J
- 通讯作者:Simmons J
First Column Boundary Operator Product Expansion Coefficients
第一列边界算子乘积展开系数
- DOI:10.48550/arxiv.0712.3575
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Simmons J
- 通讯作者:Simmons J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Cardy其他文献
Universal amplitude ratios in the two-dimensional $q$-state Potts model and percolation from quantum field theory
二维 $q$ 态 Potts 模型中的通用振幅比和量子场论的渗透
- DOI:
10.1016/s0550-3213(98)00144-8 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
G. Delfino;John Cardy - 通讯作者:
John Cardy
The power of two dimensions
二维的力量
- DOI:
10.1038/nphys223 - 发表时间:
2006-02-01 - 期刊:
- 影响因子:18.400
- 作者:
John Cardy - 通讯作者:
John Cardy
Conformal Invariance in Percolation, Self-Avoiding Walks, and Related Problems
- DOI:
10.1007/s00023-003-0928-8 - 发表时间:
2003-12-01 - 期刊:
- 影响因子:1.300
- 作者:
John Cardy - 通讯作者:
John Cardy
Network Models in Class C on Arbitrary Graphs
- DOI:
10.1007/s00220-005-1304-y - 发表时间:
2005-02-25 - 期刊:
- 影响因子:2.600
- 作者:
John Cardy - 通讯作者:
John Cardy
John Cardy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Cardy', 18)}}的其他基金
Exotic Phases and Loop Models in Condensed Matter
凝聚态物质中的奇异相和环模型
- 批准号:
EP/F008880/1 - 财政年份:2007
- 资助金额:
$ 40.07万 - 项目类别:
Research Grant
Oxford Condensed Matter Theory Programme Grant
牛津凝聚态理论项目资助
- 批准号:
EP/D050952/1 - 财政年份:2006
- 资助金额:
$ 40.07万 - 项目类别:
Research Grant
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Contribution of Endothelial Planar Cell Polarity pathways in Blood Flow Direction Sensing
内皮平面细胞极性通路在血流方向传感中的贡献
- 批准号:
10750690 - 财政年份:2024
- 资助金额:
$ 40.07万 - 项目类别:
Cell cycle control of cell polarity and fate in epidermal morphogenesis
表皮形态发生中细胞极性和命运的细胞周期控制
- 批准号:
10608036 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Wnt5a/Ror2 Signaling in Jaw Bone Development
颌骨发育中的 Wnt5a/Ror2 信号转导
- 批准号:
10730208 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Understanding the Dynamics of Periodic Planar Microstructures Responding to Colliding Micro-Particles
了解周期性平面微结构响应碰撞微粒的动力学
- 批准号:
2318110 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
Study of High Precision Position Control for Underwater Charging Using Planar Charging Equipment by Hovering-AUV
悬停AUV平面充电设备水下充电高精度位置控制研究
- 批准号:
23K19108 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Rigid Planar Organic Molecules for Low Threshold Organic Solid-State Lasers
用于低阈值有机固态激光器的刚性平面有机分子
- 批准号:
23KK0099 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
High-Performance Gradient Coil for 7 Tesla MRI
用于 7 特斯拉 MRI 的高性能梯度线圈
- 批准号:
10630533 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:














{{item.name}}会员




