Supergravity, quantum field theory and black holes

超引力、量子场论和黑洞

基本信息

  • 批准号:
    EP/D072077/1
  • 负责人:
  • 金额:
    $ 76.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2006
  • 资助国家:
    英国
  • 起止时间:
    2006 至 无数据
  • 项目状态:
    已结题

项目摘要

The two cornerstones of theoretical physics are quantum theory and our theory of gravity, Einstein's theory of General Relativity.The essence of quantum mechanics is that particles sometimes behave like waves and vice-versa. Three of the four known forces are quantum mechanical in nature. These are the electromagnetic, the weak nuclear and the strong nuclear forces. Indeed these force are described by the Standard Model of particle physics. This is a quantum field theory, more precisely a quantum Yang-Mills theory, and it has now been tested to extraordinary precision in particle accelerators.The fourth force, gravity, on the other hand hand, is described by General Relativity. It says that the phenomenon of, say, an apple falling onto Isaac Newton's head, is a manifestation of the curvature of space-time. To get a flavour of this, imagine a big latex rubber sheet with a shot-put sitting in the middle stretching it down. If we now put a marble on the sheet, it will roll toward the shot-put as if it is being pulled by some force.General Relativity is also very accurate, having been tested in many different ways. One of the most interesting aspects of the theory is that it predicts the existence of black holes. In a black hole gravity is so strong, that is, the curvature of spacetime is so great, that even light cannot escape. We now think that all galaxies have a huge black sitting at their centre. General Relativity is also the basis for our theory of the origin of the universe, that everything began about 10 billion years ago in a very tiny compressed state and then exploded - the Big Bang .So, we have two beautiful theories, the Standard Model and General Relativity, and both are very accurate. But they are mathematically incompatible! How can this possibly be? The point is that the two theories are associated with very different scales: on small scales, for current particle physics, gravity is so weak that we can just forget about it. Similarly, General Relativity is applicable on very large scales when all other particle forces are negligible. This is why we can have the two incompatible theories happily co-existing.However, we know that there are some situations where we need both theories: for example inside black holes and at the Big Bang. A theory that unifies the two is called a theory of quantum gravity. I work on a candidate quantum gravity called string theory. The main idea of string theory is that everything is really made up of very tiny little loops or segments of string. The oscillations of these strings, like the different notes on a violin, would each become, via quantum mechanics, a different elementary particle. If the string oscillates one way it's an electron, if it oscillates another way it's a proton and so on. Understanding the mathematics of exactly how this might happen is something that I work on. Interestingly, string theory is associated with very interesting mathematics, particularly geometry, and the interplay between the two is a great inspiration in my work.Symmetry has been a major guiding principle in constructing both the Standard Model and General Relativity. Now, every particle that we know of is either a boson or a fermion. The bosons, a photon for example, are associated with forces, while the fermions, an electron for example, are associated with matter. A very interesting symmetry, called supersymmetry, is essentially the only way to connect bosons with fermions via a symmetry. It is a central component of string theory and, based on a lot of hints, I think obtaining a deeper mathematical understanding of supersymmetry in string theory will lead to a deeper understanding of string theory itself. This is what I am proposing to work on and I hope that it will provide a significant step on the journey to determine whether or not Nature is described by string theory.
理论物理学的两个基石是量子理论和引力理论,即爱因斯坦的广义相对论。量子力学的本质是粒子有时表现得像波,反之亦然。四种已知的力中有三种是量子力学性质的。它们是电磁力、弱核力和强核力。事实上,这些力是由粒子物理学的标准模型描述的。这是一种量子场论,更准确地说是量子杨-米尔斯理论,它现在已经在粒子加速器中得到了非常精确的检验。另一方面,第四种力,引力,由广义相对论描述。它说,比如说,一个苹果落在艾萨克·牛顿的头上,是时空弯曲的一种表现。为了更好地理解这种感觉,想象一下一个巨大的乳胶橡胶板,中间放着一个铅球,把它拉下来。如果我们现在把一个弹珠放在床单上,它会像被某种力拉着一样向铅球滚去。广义相对论也非常精确,已经用许多不同的方法进行了检验。这个理论最有趣的方面之一是它预言了黑洞的存在。在黑洞中,引力是如此之强,也就是说,时空的曲率是如此之大,以至于连光也无法逃脱。我们现在认为所有星系的中心都有一个巨大的黑色。广义相对论也是我们关于宇宙起源的理论的基础,即一切都在大约100亿年前开始于一个非常微小的压缩状态,然后爆炸-大爆炸。所以,我们有两个美丽的理论,标准模型和广义相对论,两者都非常准确。但它们在数学上是不相容的!这怎么可能?关键在于,这两种理论所涉及的尺度非常不同:在小尺度上,对于当前的粒子物理学来说,引力是如此之弱,以至于我们可以忘记它;同样,当所有其他粒子力都可以忽略不计时,广义相对论也适用于非常大的尺度。这就是为什么我们可以让这两个不相容的理论愉快地共存。然而,我们知道,在某些情况下,我们需要这两个理论:例如在黑洞内部和大爆炸。将两者统一起来的理论称为量子引力理论。我在研究一个叫做弦理论的候选量子引力。弦理论的主要思想是,一切都是由非常小的弦环或弦段组成的。这些弦的振动,就像小提琴上的不同音符,通过量子力学,每一个都将成为不同的基本粒子。如果弦以一种方式振荡,它就是电子,如果以另一种方式振荡,它就是质子,等等。理解这到底是如何发生的数学是我的工作。有趣的是,弦理论与非常有趣的数学有关,特别是几何学,而这两者之间的相互作用对我的工作是一个很大的启发。对称性一直是构建标准模型和通用模型的主要指导原则。相对论我们所知道的每一个粒子不是玻色子就是费米子。玻色子,例如光子,与力有关,而费米子,例如电子,与物质有关。一个非常有趣的对称性,称为超对称性,本质上是通过对称性将玻色子与费米子联系起来的唯一方法。它是弦论的核心组成部分,基于大量的提示,我认为对弦论中的超对称性有更深的数学理解将导致对弦论本身有更深的理解。这就是我打算做的工作,我希望它能在确定弦理论是否能描述自然的旅程中迈出重要的一步。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solutions of type IIB and D=11 supergravity with Schrödinger ( z ) symmetry
具有 Schrödinger ( z ) 对称性的 IIB 型和 D=11 超重力解
AdS solutions through transgression
  • DOI:
    10.1088/1126-6708/2008/09/021
  • 发表时间:
    2008-07
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Aristomenis Donos;J. Gauntlett;Nakwoo Kim
  • 通讯作者:
    Aristomenis Donos;J. Gauntlett;Nakwoo Kim
Superfluid black branes in AdS4 × S7
  • DOI:
    10.1007/jhep06(2011)053
  • 发表时间:
    2011-04
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Aristomenis Donos;J. Gauntlett
  • 通讯作者:
    Aristomenis Donos;J. Gauntlett
Schrodinger invariant solutions of type IIB with enhanced supersymmetry
具有增强超对称性的 IIB 型薛定谔不变解
AdS 3 × w ( S 3 × S 3 × S 1 ) solutions of type IIB string theory
AdS 3 × w ( S 3 × S 3 × S 1 ) IIB 型弦理论的解
  • DOI:
    10.1088/0264-9381/26/6/065009
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Donos A
  • 通讯作者:
    Donos A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerome Gauntlett其他文献

Brane new worlds
全新的世界
  • DOI:
    10.1038/35003679
  • 发表时间:
    2000-03-02
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Jerome Gauntlett
  • 通讯作者:
    Jerome Gauntlett

Jerome Gauntlett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerome Gauntlett', 18)}}的其他基金

M-Theory, Cosmology and Quantum Field Theory
M 理论、宇宙学和量子场论
  • 批准号:
    ST/L00044X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Research Grant
M-Theory, Cosmology and Quantum Field Theory
M 理论、宇宙学和量子场论
  • 批准号:
    ST/J000353/1
  • 财政年份:
    2011
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Research Grant
The Geometry of Supergravity Solutions and Applications
超重力几何解及其应用
  • 批准号:
    EP/D047463/1
  • 财政年份:
    2006
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
  • 批准号:
    50906055
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
广义Besov函数类上的几个逼近特征
  • 批准号:
    10926056
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
  • 批准号:
    30772507
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
驻波场驱动的量子相干效应的研究
  • 批准号:
    10774058
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
量子计算电路的设计和综合
  • 批准号:
    60676020
  • 批准年份:
    2006
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
半导体物理中的非线性偏微分方程组
  • 批准号:
    10541001
  • 批准年份:
    2005
  • 资助金额:
    4.0 万元
  • 项目类别:
    专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
  • 批准号:
    30570686
  • 批准年份:
    2005
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Research Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Standard Grant
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
  • 批准号:
    2340239
  • 财政年份:
    2024
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Continuing Grant
Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
  • 批准号:
    EP/Z000157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Research Grant
FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
  • 批准号:
    2328096
  • 财政年份:
    2024
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Standard Grant
Algorithms for simulation of strong-field multi-particle dynamics on quantum computers
量子计算机上强场多粒子动力学模拟算法
  • 批准号:
    24K08336
  • 财政年份:
    2024
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
  • 批准号:
    2890913
  • 财政年份:
    2023
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Studentship
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
  • 批准号:
    2882485
  • 财政年份:
    2023
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Studentship
M-Theory, Cosmology and Quantum Field Theory
M 理论、宇宙学和量子场论
  • 批准号:
    ST/X000575/1
  • 财政年份:
    2023
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Research Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
  • 批准号:
    2310279
  • 财政年份:
    2023
  • 资助金额:
    $ 76.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了