Three-Dimensional Superresolution Imaging in Living Cells Using Single-Molecule A
使用单分子 A 进行活细胞三维超分辨率成像
基本信息
- 批准号:7515437
- 负责人:
- 金额:$ 28.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBehaviorCellsCellular StructuresDepthDiagnosticDiseaseDrug Delivery SystemsFluorescence MicroscopyFutureGoalsImageImaging TechniquesIndividualInterventionLabelLifeLightLightingMedicalMethodsMicroscopeMicroscopicMicroscopyMorphologyOpticsOrganellesPhotobleachingPositioning AttributeResearchResolutionSamplingShapesSourceStandards of Weights and MeasuresThickThree-Dimensional ImageTimeUrsidae Familycell fixingdetectorfluorophoreimage processinginterestmutantnanoscaleoptical imagingprogramssingle moleculetrendtwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): 3-D Superresolution Imaging in Living Cells with Single-Molecule Active Control Recent advances in microscopic imaging techniques with single molecules have led to superresolution information, that is, the ability to observe objects with resolution beyond the standard diffraction limit. These methods involve wide-field imaging, and require active control of the molecules in order to either turn emitters on or turn emitters off in order to maintain the concentration of emitters low enough to digitize the point-spread functions of individual molecules. By many imaging, photobleaching, and reactivation cycles, a superresolution image is obtained, but only for a two-dimensional projection of the actual three-dimensional sample. These methods may be collectively termed Single-Molecule Active Control Microscopy (SMACM), and have previously been applied primarily to fixed cells. However, many samples of biomedical interest, such as cells, are thick enough that two-dimensional imaging is a severe limitation. The primary goal of this research program is to achieve three-dimensional superresolution imaging in living cells using SMACM. This research will attack the problem of 3-D superresolution imaging with three thrusts. First, the optical illumination used to achieve active control will be tailored in its intensity as a function of time, in order to increase the efficiency of the reactivation and imaging process and eventually enable observation of time- dependent changes. Second, the microscope will be redesigned to utilize rotating point-spread functions. This relies on forcing the image of a single emitter to have a shape at the detector which rotates for different z- positions of the single molecule in the sample. The effect of this will be to enable much more precise determinations of the z positions of various single-molecule labels in the sample, which, when combined with precise localization in the x-y plane, will yield three-dimensional image information beyond the diffraction limit. Third, the research will implement multi-plane imaging in addition to rotating point-spread-functions, which will enable acquisition of 3D information over a greater depth into the sample. The results of this research will be to enable a new type of optical microscopy of cells, where three- dimensional superresolution information can be obtained in a noninvasive fashion about cellular substructures, including single molecules. The power of a single fluorophore as a nanoscale light source will then be used to its maximum benefit. By providing a new method for three-dimensional high resolution optical imaging in living cells, this research will bear directly upon biotechnological and biomedical applications as these fields currently utilize optical fluorescence microscopy of cells in many diagnostic situations. Current trends are pushing toward smaller and smaller spatial scales for analysis of the behavior and morphology of individual cellular structures. The ability to specifically and noninvasively analyze mutant or toxic behaviors of organelles and other tiny cellular structures will allow precise assessment of the utility of targeted drug treatments, which will help drive the future of medical interventions exactly at the point of disease.
描述(由申请人提供):具有单分子主动控制的活细胞中的 3-D 超分辨率成像单分子显微成像技术的最新进展带来了超分辨率信息,即以超出标准衍射极限的分辨率观察物体的能力。这些方法涉及宽视场成像,并且需要对分子进行主动控制,以便打开或关闭发射器,以保持发射器的浓度足够低,以数字化单个分子的点扩散函数。通过多次成像、光漂白和再激活循环,获得超分辨率图像,但仅限于实际三维样本的二维投影。这些方法可以统称为单分子主动控制显微镜(SMACM),并且之前主要应用于固定细胞。然而,许多具有生物医学意义的样本(例如细胞)足够厚,以至于二维成像受到严重限制。该研究项目的主要目标是使用 SMACM 在活细胞中实现三维超分辨率成像。这项研究将从三个方面来解决 3D 超分辨率成像问题。首先,用于实现主动控制的光学照明将根据时间的函数调整其强度,以提高重新激活和成像过程的效率,并最终能够观察与时间相关的变化。其次,显微镜将被重新设计以利用旋转点扩散功能。这依赖于迫使单个发射器的图像在检测器处具有针对样本中单个分子的不同 z 位置旋转的形状。其效果将是能够更精确地确定样品中各种单分子标记的 z 位置,当与 x-y 平面中的精确定位相结合时,将产生超出衍射极限的三维图像信息。第三,除了旋转点扩散函数之外,该研究还将实现多平面成像,这将能够在更大深度的样本中获取 3D 信息。这项研究的结果将是实现一种新型的细胞光学显微镜,其中可以以非侵入性方式获得有关细胞亚结构(包括单分子)的三维超分辨率信息。单个荧光团作为纳米级光源的力量将得到最大程度的利用。通过提供一种在活细胞中进行三维高分辨率光学成像的新方法,这项研究将直接影响生物技术和生物医学应用,因为这些领域目前在许多诊断情况下使用细胞光学荧光显微镜。当前的趋势正在推动越来越小的空间尺度来分析单个细胞结构的行为和形态。特异性、非侵入性地分析细胞器和其他微小细胞结构的突变或毒性行为的能力将允许精确评估靶向药物治疗的效用,这将有助于推动未来在疾病发生时进行医疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(6)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William E Moerner其他文献
William E Moerner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William E Moerner', 18)}}的其他基金
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
9920156 - 财政年份:2016
- 资助金额:
$ 28.47万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10627987 - 财政年份:2016
- 资助金额:
$ 28.47万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10166075 - 财政年份:2016
- 资助金额:
$ 28.47万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10405123 - 财政年份:2016
- 资助金额:
$ 28.47万 - 项目类别:
2010 Single-Molecule Approaches to Biology Gordon Research Conference
2010 年单分子生物学方法戈登研究会议
- 批准号:
7904388 - 财政年份:2010
- 资助金额:
$ 28.47万 - 项目类别:
Subcellular architecture of regulatory protein complexes at the bacterial pole
细菌极调节蛋白复合物的亚细胞结构
- 批准号:
8401468 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
Three-Dimensional Superresolution Imaging in Living Cells Using Single-Molecule A
使用单分子 A 进行活细胞三维超分辨率成像
- 批准号:
8119132 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
Actively Controlled and Targeted Single-Molecule Probes for Cellular Imaging
用于细胞成像的主动控制和靶向单分子探针
- 批准号:
7694995 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
Subcellular architecture of regulatory protein complexes at the bacterial pole
细菌极调节蛋白复合物的亚细胞结构
- 批准号:
8515456 - 财政年份:2008
- 资助金额:
$ 28.47万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
X-SCID Rabbit as a Model to Investigate Long-term In Vivo Behavior of Human Corneal Epithelial Stem Cells
X-SCID 兔作为模型研究人角膜上皮干细胞的长期体内行为
- 批准号:
23K09006 - 财政年份:2023
- 资助金额:
$ 28.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unification of Phase and Collective Behavior of Cells based on Polarity Dynamics
基于极性动力学的细胞相位和集体行为的统一
- 批准号:
23K03342 - 财政年份:2023
- 资助金额:
$ 28.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 28.47万 - 项目类别:
Standard Grant
Genetic interactions among targets of master regulator genes as drivers of complex behavior in Drosophila intestinal stem cells
主调节基因靶标之间的遗传相互作用作为果蝇肠道干细胞复杂行为的驱动因素
- 批准号:
10629992 - 财政年份:2023
- 资助金额:
$ 28.47万 - 项目类别:
Elucidation of the mechanism of orthodontic mini-screw dropout approaching from behavior analysis of stress-induced senescent cells
从应激衰老细胞的行为分析阐明正畸小螺钉脱落的机制
- 批准号:
21K17172 - 财政年份:2021
- 资助金额:
$ 28.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidating the effects of the spatial location and density of cancer cells within the extracellular matrix on cell behavior and function.
阐明细胞外基质内癌细胞的空间位置和密度对细胞行为和功能的影响。
- 批准号:
21K20512 - 财政年份:2021
- 资助金额:
$ 28.47万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Epigenomic labeling of cells that drive drug abuse behavior
驱动药物滥用行为的细胞的表观基因组标记
- 批准号:
10653905 - 财政年份:2021
- 资助金额:
$ 28.47万 - 项目类别:
Epigenomic labeling of cells that drive drug abuse behavior
驱动药物滥用行为的细胞的表观基因组标记
- 批准号:
10463789 - 财政年份:2021
- 资助金额:
$ 28.47万 - 项目类别:
Elucidation of the functional role of neural stem cells in the area postrema in the regulation of feeding behavior
阐明后区神经干细胞在调节摄食行为中的功能作用
- 批准号:
21K15177 - 财政年份:2021
- 资助金额:
$ 28.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Epigenomic labeling of cells that drive drug abuse behavior
驱动药物滥用行为的细胞的表观基因组标记
- 批准号:
10293229 - 财政年份:2021
- 资助金额:
$ 28.47万 - 项目类别:














{{item.name}}会员




