3D Dynamics of Cellular Information Flow
蜂窝信息流的 3D 动力学
基本信息
- 批准号:8502216
- 负责人:
- 金额:$ 31.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBehaviorBiologicalCell NucleusCellsChromosome StructuresChromosomesCollectionComplexDNADevelopmentDimensionsDiseaseEnzymesFluorescence MicroscopyGene ActivationGenesGenetic TranscriptionGoalsGrantImageImage AnalysisKnowledgeLabelLifeLocationMammalian CellMeasurementMeasuresMessenger RNAMethodsMicroscopeMicroscopyModificationMolecularMotionOligonucleotidesOptical MethodsOpticsOrganismPatternPerformancePhotonsPositioning AttributeProcessProtein BiosynthesisProteinsPupilRelative (related person)ResearchResolutionSamplingSiteSpeedSpottingsStructureSystemTestingThree-Dimensional ImagingTimeTranslationsValidationViralVisible RadiationWorkYeastsbasebioimagingcell motilitycellular imagingdesignflexibilityfluorophoreimage processingimaging detectorimprovedmolecular scalenanomachinenoveloptical imagingparticleprogramsresponsesingle moleculetooltwo-dimensional
项目摘要
: GM85437-05A1 Moerner,William E.
The complexity of cellular activities requires the coordination of a huge array of enzymes, the
nanomachines of the cell, and their work on proteins and oligonucleotides. Cellular systems store information
in a virtually permanent form in the cellular DNA, which is transcribed into useful messages for remote protein
synthesis in mRNA. The organization (location) and motions of DNA in the nucleus represent one important
kind of cellular information flow, yet little is known about the precise three-dimensional motions of these
molecules in cells. Because the primary biomolecular players in cells are in the size range on the order of 10
nm, measurements are needed on this size scale in living systems. The relatively noninvasive capability of
optical and fluorescence microscopy to observe behavior in cells has been hindered until recently by the
optical diffraction limit of ~200 nm for visible light. It is a primary thrust of this work to enhance and further
three-dimensional (3D) optical methods for examining locations and dynamics at unprecedented spatial and
temporal precision in living cells.
This application proposes continuation and expansion of current research to extract 3D positions of
single labeled biomolecules in living cells with high time resolution and with spatial precision and accuracy far
beyond the optical diffraction limit, down to the 10-20 nm level. The key experimental tool in use is our recently
developed double-helix point spread function (DH-PSF) microscope, an apparatus that may be implemented
by simple modification of a conventional wide-field epifluorescence or total-internal-reflection microscope. We
apply polarization sensing and new pupil plane processing methods to extend performance. The primary
analysis tools involve statistical image processing, wavelet analysis, and compressed sensing to extract hidden
information in the trajectories. The goals of this research are to push the DH-PSF microscope to the highest
possible levels of localization precision and accuracy in x, y, and z with high speed and thus obtain positional
information in cells approaching the molecular scale, and to apply the approach to a specific biological
problem.
Two key aims define this program: Aim 1: Extract orientation of single fluorophores with high collection
efficiency in order to push xyz localization accuracy to the highest levels in cells. A photon-efficient,
polarization-sensing DH-PSF microscope design capable of correcting single-molecule dipole localization
errors by pupil plane processing will be built and validated. Aim 2: Apply the DH-PSF to infer relative
positioning and changes in dynamical motions of DNA loci in living cells. Because the xyz motions of DNA loci
under various gene activation conditions are not known on the ~10 ms time scale with ~10-20 nm precision, we
will measure the time-dependent trajectories of single loci and pairs of loci with unprecedented levels of
quantitation.
: GM85437-05A1 莫尔纳,威廉 E.
细胞活动的复杂性需要大量酶的协调,
细胞的纳米机器及其对蛋白质和寡核苷酸的作用。蜂窝系统存储信息
以几乎永久的形式存在于细胞 DNA 中,被转录为远程蛋白质的有用信息
mRNA 中的合成。 DNA 在细胞核中的组织(位置)和运动代表了一项重要的研究
一种细胞信息流,但人们对这些细胞的精确三维运动知之甚少
细胞中的分子。因为细胞中主要生物分子的大小范围为 10
nm,在生命系统中需要对这种尺寸进行测量。相对无创的能力
直到最近,用于观察细胞行为的光学和荧光显微镜仍受到阻碍
可见光的光学衍射极限约为 200 nm。这项工作的主要目标是加强和进一步
三维(3D)光学方法,用于在前所未有的空间和动态下检查位置和动态
活细胞的时间精度。
该应用提出了当前研究的延续和扩展,以提取 3D 位置
活细胞中的单标记生物分子具有高时间分辨率和远距离的空间精度和准确度
超出光学衍射极限,低至 10-20 nm 水平。使用的关键实验工具是我们最近
开发了双螺旋点扩散函数(DH-PSF)显微镜,一种可以实现的装置
通过对传统的宽视场落射荧光或全内反射显微镜进行简单修改。我们
应用偏振传感和新的光瞳平面处理方法来扩展性能。初级
分析工具涉及统计图像处理、小波分析和压缩感知来提取隐藏的
轨迹中的信息。这项研究的目标是将DH-PSF显微镜推向最高水平
高速定位 x、y 和 z 方向的精确度和准确度,从而获得位置
细胞中的信息接近分子尺度,并将该方法应用于特定的生物
问题。
该计划有两个关键目标: 目标 1:以高收集量提取单一荧光团的方向
效率,以便将细胞中的 xyz 定位精度推至最高水平。光子效率高,
能够校正单分子偶极子定位的偏振传感 DH-PSF 显微镜设计
将建立并验证光瞳平面处理产生的误差。目标 2:应用 DH-PSF 推断相对值
活细胞中 DNA 位点动态运动的定位和变化。因为 DNA 位点的 xyz 运动
在各种基因激活条件下,在约 10 毫秒的时间尺度上,约 10-20 纳米的精度是未知的,我们
将以前所未有的水平测量单个基因座和基因座对的时间依赖性轨迹
定量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William E Moerner其他文献
William E Moerner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William E Moerner', 18)}}的其他基金
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
9920156 - 财政年份:2016
- 资助金额:
$ 31.59万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10627987 - 财政年份:2016
- 资助金额:
$ 31.59万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10166075 - 财政年份:2016
- 资助金额:
$ 31.59万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10405123 - 财政年份:2016
- 资助金额:
$ 31.59万 - 项目类别:
2010 Single-Molecule Approaches to Biology Gordon Research Conference
2010 年单分子生物学方法戈登研究会议
- 批准号:
7904388 - 财政年份:2010
- 资助金额:
$ 31.59万 - 项目类别:
Three-Dimensional Superresolution Imaging in Living Cells Using Single-Molecule A
使用单分子 A 进行活细胞三维超分辨率成像
- 批准号:
7515437 - 财政年份:2008
- 资助金额:
$ 31.59万 - 项目类别:
Subcellular architecture of regulatory protein complexes at the bacterial pole
细菌极调节蛋白复合物的亚细胞结构
- 批准号:
8401468 - 财政年份:2008
- 资助金额:
$ 31.59万 - 项目类别:
Three-Dimensional Superresolution Imaging in Living Cells Using Single-Molecule A
使用单分子 A 进行活细胞三维超分辨率成像
- 批准号:
8119132 - 财政年份:2008
- 资助金额:
$ 31.59万 - 项目类别:
Actively Controlled and Targeted Single-Molecule Probes for Cellular Imaging
用于细胞成像的主动控制和靶向单分子探针
- 批准号:
7694995 - 财政年份:2008
- 资助金额:
$ 31.59万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
METABOLISM: accelerator Mass SpEctrometry to quanTify nanoplastics and decipher their fAte and Behavior in envirOnmentaL and bIological SysteMs
代谢:加速器质谱法可量化纳米塑料并破译其在环境和生物系统中的命运和行为
- 批准号:
EP/Y002733/1 - 财政年份:2024
- 资助金额:
$ 31.59万 - 项目类别:
Research Grant
REU Site: Ecology, Evolution, and Behavior Field Research at Mountain Lake Biological Station
REU 站点:山湖生物站的生态、进化和行为领域研究
- 批准号:
2349462 - 财政年份:2024
- 资助金额:
$ 31.59万 - 项目类别:
Standard Grant
BRITE Pivot: Growing Biological Methods to Improve Soil Behavior for Infrastructure Protection
BRITE 支点:不断发展生物方法来改善土壤行为以保护基础设施
- 批准号:
2227491 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
Standard Grant
Biological Mechanisms of Suicidal Behavior among Sexual Minority Adolescents - Supplement
性少数青少年自杀行为的生物学机制 - 补充
- 批准号:
10823709 - 财政年份:2023
- 资助金额:
$ 31.59万 - 项目类别:
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2022
- 资助金额:
$ 31.59万 - 项目类别:
Discovery Grants Program - Individual
The virtual rodent: a platform to study the artificial and biological control of natural behavior
虚拟啮齿动物:研究自然行为的人工和生物控制的平台
- 批准号:
10540574 - 财政年份:2022
- 资助金额:
$ 31.59万 - 项目类别:
The Virtual Rodent: A Platform to Study the Artificial and Biological Control of Natural Behavior
虚拟啮齿动物:研究自然行为的人工和生物控制的平台
- 批准号:
10633144 - 财政年份:2022
- 资助金额:
$ 31.59万 - 项目类别:
Schooling through Vortex Streets; A Biological and Computational Approach to Understanding Collective Behavior in Wild Fish
通过涡街 (Vortex Street) 上学;
- 批准号:
2102891 - 财政年份:2021
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2021
- 资助金额:
$ 31.59万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Biological Basis of Social Behavior
REU 网站:社会行为的生物学基础
- 批准号:
1852338 - 财政年份:2020
- 资助金额:
$ 31.59万 - 项目类别:
Continuing Grant














{{item.name}}会员




