Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
基本信息
- 批准号:9920156
- 负责人:
- 金额:$ 63.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAwardBacteriaBehaviorBiological ModelsBiotechnologyCaulobacter crescentusCellsCellular biologyChromatinCiliaCollaborationsComplexDNADependenceDiseaseEnvironmentEnzymesFluorescence MicroscopyFunding OpportunitiesImageLabelLaboratoriesLightMammalian CellMeasurementMeasuresMethodologyMethodsMicroscopeMicroscopyModificationMolecular MotorsMotionMotivationOligonucleotidesOpticsOrganellesOrganismPositioning AttributeProblem SolvingProcessProteinsPupilRNAResearchResearch MethodologyResearch PersonnelResolutionSpeedStructureThree-Dimensional ImagingTimeVisible RadiationWorkbasebioimagingcell behaviorcellular imagingfluorescence imaginghigh dimensionalityimaging capabilitiesimaging modalitylight microscopymolecular imagingnanomachinenanoscaleoptical imagingorganizational structureparticleprogramspublic health relevanceresearch and developmentsingle moleculetool
项目摘要
DESCRIPTION (provided by applicant): The cellular environment is both powerful and complex, depending both on structural organization from the micron scale down to the nanometer scale, as well as on the dynamic time-dependence of a huge array of enzymes, the Nano machines of the cell, and their work on proteins and oligonucleotides. Visible fluorescence microscopy has been a useful tool capable of non-invasively exploring cellular behavior, but the limited resolution of visible light microscopy has severely restricted the information obtainable on structures on a scale below 250 nm. Because the primary bio-molecular players in cells are in the size range on the order of 10 nm, measurements are needed on this size scale in living systems. Super-resolution microscopy, either based on single-molecule fluorescence imaging and control of the emitting concentration, or on stimulated emission depletion, has solved this problem by enabling access to spatial resolutions down to the 10-40 nm regimes and below. In addition, the complementary method of single-molecule tracking provides access to the details of motions of cellular components such as the molecular motors or the motion of DNA or RNA. Combined with advanced three-dimensional (3D) imaging, single-particle tracking allows the full motion of specific cellular players to be observed in their actual context at high speed. It is a primary thrust of this work to develop and enhance both 3D super-resolution imaging and 3D single-particle tracking in cells by pushing the boundaries of both approaches and inventing new strategies to overcome critical limitations, which will lead to unprecedented spatial and temporal information in fixed and living cells. Research in the Moerner laboratory broadly addresses the limitations of super-resolution imaging and single-particle tracking in cells. A key tool involves using pupil plane modification of wide-field microscopes to provide advanced function, such as 3D imaging over unprecedented axial range or imaging of molecular orientations at the single-molecule level. The deep motivation here is to ask the fundamental question: how can the information available from each single molecule be maximized, both by measuring new variables, but also by examining every aspect of the process and inventing new methods to remove any systematic errors. The methodological developments of this research will be applied to a variety of critical problems in cell biology by continuing established collaborations and developing new collaborations with well-known biologists. The bacterium, Caulobacter crescentus, remains as a powerful model system needing elucidation of the superstructure and motions of biomolecules to understand the origins of asymmetric division. The primary cilium, a tiny but important cellular organelle, is filled with protein motions and interactions which need exploration on the nanometer scale. The organization of chromatin on all scales remains to be fully understood. These and other cell biology problems with implications for both normal and diseased function will be the focus of the application of the advanced imaging methods of this research program.
描述(由申请人提供):细胞环境既强大又复杂,既取决于从微米尺度到纳米尺度的结构组织,也取决于大量酶的动态时间依赖性,细胞的纳米机器及其对蛋白质和寡核苷酸的作用。可见荧光显微镜已经成为一种能够非侵入性地探索细胞行为的有用工具,但是可见光显微镜的有限分辨率严重限制了在250 nm以下的尺度上可获得的结构信息。由于细胞中的主要生物分子参与者的尺寸范围在10 nm左右,因此在生命系统中需要在此尺寸尺度上进行测量。超分辨率显微镜,无论是基于单分子荧光成像和控制的发射浓度,或受激发射耗尽,已经解决了这个问题,使访问空间分辨率下降到10-40 nm制度和以下。此外,单分子跟踪的补充方法提供了对细胞成分运动细节的访问,例如分子马达或DNA或RNA的运动。结合先进的三维(3D)成像,单粒子跟踪允许在实际环境中高速观察特定细胞运动员的完整运动。这项工作的主要目的是通过推动这两种方法的界限并发明新的策略来克服关键限制,从而开发和增强细胞中的3D超分辨率成像和3D单粒子跟踪,这将导致固定和活细胞中前所未有的空间和时间信息。Moerner实验室的研究广泛地解决了超分辨率成像和细胞中单粒子跟踪的局限性。一个关键的工具涉及使用宽视场显微镜的光瞳平面修改来提供高级功能,例如在前所未有的轴向范围内进行3D成像或在单分子水平上进行分子取向成像。这里的深层动机是问一个基本问题:如何最大限度地利用每个分子的信息,既要测量新的变量,又要检查过程的各个方面,并发明新的方法来消除任何系统误差。本研究的方法学发展将通过继续与知名生物学家建立合作并开发新的合作来应用于细胞生物学中的各种关键问题。细菌,新月柄杆菌,仍然是一个强大的模型系统,需要阐明的超结构和生物分子的运动,以了解不对称分裂的起源。初级纤毛是一个微小但重要的细胞器,它充满了蛋白质的运动和相互作用,需要在纳米尺度上进行探索。染色质在所有尺度上的组织仍有待完全理解。这些和其他细胞生物学问题与正常和病变功能的影响将是本研究计划的先进成像方法的应用的重点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William E Moerner其他文献
William E Moerner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William E Moerner', 18)}}的其他基金
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10627987 - 财政年份:2016
- 资助金额:
$ 63.17万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10166075 - 财政年份:2016
- 资助金额:
$ 63.17万 - 项目类别:
Single-Molecule Imaging for Cell Biology and Super-Resolution Microscopy
细胞生物学和超分辨率显微镜的单分子成像
- 批准号:
10405123 - 财政年份:2016
- 资助金额:
$ 63.17万 - 项目类别:
2010 Single-Molecule Approaches to Biology Gordon Research Conference
2010 年单分子生物学方法戈登研究会议
- 批准号:
7904388 - 财政年份:2010
- 资助金额:
$ 63.17万 - 项目类别:
Three-Dimensional Superresolution Imaging in Living Cells Using Single-Molecule A
使用单分子 A 进行活细胞三维超分辨率成像
- 批准号:
7515437 - 财政年份:2008
- 资助金额:
$ 63.17万 - 项目类别:
Subcellular architecture of regulatory protein complexes at the bacterial pole
细菌极调节蛋白复合物的亚细胞结构
- 批准号:
8401468 - 财政年份:2008
- 资助金额:
$ 63.17万 - 项目类别:
Three-Dimensional Superresolution Imaging in Living Cells Using Single-Molecule A
使用单分子 A 进行活细胞三维超分辨率成像
- 批准号:
8119132 - 财政年份:2008
- 资助金额:
$ 63.17万 - 项目类别:
Actively Controlled and Targeted Single-Molecule Probes for Cellular Imaging
用于细胞成像的主动控制和靶向单分子探针
- 批准号:
7694995 - 财政年份:2008
- 资助金额:
$ 63.17万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 63.17万 - 项目类别:
Research Grant














{{item.name}}会员




