Simulation Technology: The Next Generation
仿真技术:下一代
基本信息
- 批准号:EP/D502357/1
- 负责人:
- 金额:$ 18.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
All the change and activity that we see around us daily, both natural and man-made, is caused by the movement and Interactions of molecules. Molecules are so small (about one millionth of a millimetre across) that we cannot see them, and in order to understand why they behave as they do, we have to use computer simulations: virtual reality experiments in which the activity of individual molecules is predicted using computers, and then magnified millions of times for us to see.Computer simulations are not just interesting visual insights into the molecular world, they are also very useful to scientists. Computer simulations are capable of predicting what will happen in many important situations; for example, whether building materials will fail under extreme temperatures or loads, how poisons will spread, or how effective a new medicine is likely to be. In chemistry, computer simulations are replacing expensive, polluting and dangerous laboratory experiments, and it is also hoped that they will help to reduce the need to test chemicals on animals.When we use computers, we have to remember that they follow our Instructions exactly and pedantically; they cannot interpret what we mean by the instructions, and they cannot judge the results that they produce. This is summed up by the GIGO principle of computing: 'garbage in, garbage out'. If the instructions that we give a computer are defective in some way, the computer will not realise this, but will operate as usual and produce some meaningless output. The danger is that we do not realise that the output is meaningless when we use it; the computer cannot warn us.The instructions which we give to a computer in order to make it perform a simulation Include information about the molecules, such as their sizes and shapes, and also information about the forces between the molecules. These forces can pull molecules together, push them apart, twist them and turn them. The forces are the most important part of the simulation. If the Information about the forces that we give to a computer is 'garbage', so will be the resulting simulation, and any predictions that we make from it.How do we know the forces between molecules? The answer is that we do not, but again computers can come to the rescue. It is, in theory, possible to calculate forces between molecules using computers. Unfortunately, even with the thousands of millions of calculations per second performed by modem computers, our ability to calculate forces which are not 'garbage' is limited to extremely small molecules, without much practical use. In part, the difficulty of calculating forces between molecules is the fault of the method that is often used. The forces between molecules are so weak that the molecules are not even held together firmly at normal temperatures, yet the usual method starts by calculating the forces needed to completely smash the molecules into subatomic particles (something which would only happen at millions of degrees), then to rebuild them in a different way!I shall take an Indirect approach to calculating forces between molecules, by looking at the electric field which is produced by the positive and negative electric charges. in each molecule. This electric field affects the surrounding molecules, and it should be possible to calculate the forces based on this effect. Fortunately, the electric field around a molecule can be calculated quite easily using modem computers. I hope that by improving the forces between molecules which are fed in to computer simulations in this way, the simulations will be more accurate, and the predictions made from them will be more useful to scientists who use molecular simulations In their work
我们每天看到的所有变化和活动,无论是自然的还是人为的,都是由分子的运动和相互作用引起的。分子是如此之小(大约百万分之一毫米宽),我们看不到它们,为了理解它们为什么会这样做,我们必须使用计算机模拟:虚拟现实实验中,单个分子的活动是用计算机预测的,然后放大数百万倍给我们看。计算机模拟不仅仅是对分子世界的有趣的视觉见解,对科学家也很有用。计算机模拟能够预测在许多重要情况下会发生什么;例如,建筑材料是否会在极端温度或负载下失效,毒药如何传播,或者新药可能有多有效。在化学方面,计算机模拟正在取代昂贵、污染和危险的实验室实验,人们也希望计算机模拟有助于减少在动物身上进行化学试验的需要。当我们使用计算机时,我们必须记住,它们严格而迂腐地遵循我们的指令;它们不能解释我们的指令是什么意思,也不能判断它们产生的结果。这可以用GIGO的计算原则来概括:“垃圾进,垃圾出”。如果我们给计算机的指令在某些方面有缺陷,计算机不会意识到这一点,但会照常运行并产生一些无意义的输出。危险的是,我们在使用它的时候没有意识到输出是没有意义的;计算机不能警告我们。我们给计算机的指令是为了让它进行模拟,包括分子的信息,如它们的大小和形状,以及分子之间的力的信息。这些力可以把分子拉在一起,把它们分开,扭曲它们,转动它们。力是模拟中最重要的部分。如果我们提供给计算机的力的信息是"垃圾",那么由此产生的模拟以及我们从中做出的任何预测也将是"垃圾"。我们如何知道分子之间的力?答案是我们不需要,但计算机可以再次拯救我们。从理论上讲,用计算机计算分子之间的力是可能的。不幸的是,即使现代计算机每秒进行数千万次计算,我们计算力的能力也仅限于非常小的分子,没有太多的实际用途。在某种程度上,计算分子间力的困难是由于常用方法的错误。分子之间的力是如此之弱,以至于分子在正常温度下甚至不能牢固地结合在一起,然而通常的方法是从计算将分子完全粉碎成亚原子粒子所需的力开始(这只有在数百万度的情况下才会发生),然后以不同的方式重建它们!我将采取一种间接的方法来计算分子间的力,通过观察由正负电荷产生的电场。在每个分子中。这个电场会影响周围的分子,应该可以根据这个效应来计算力。幸运的是,用现代计算机可以很容易地计算出分子周围的电场。我希望通过改进分子间的作用力,以这种方式输入计算机模拟,模拟将更加准确,由此做出的预测将对使用分子模拟的科学家更有用。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First-principles calculation of local atomic polarizabilities.
- DOI:10.1021/jp073151y
- 发表时间:2007-10
- 期刊:
- 影响因子:0
- 作者:Timothy C. Lillestolen;R. Wheatley
- 通讯作者:Timothy C. Lillestolen;R. Wheatley
Time-dependent coupled-cluster calculations of polarizabilities and dispersion energy coefficients.
极化率和色散能量系数的时间相关耦合簇计算。
- DOI:10.1002/jcc.20801
- 发表时间:2008
- 期刊:
- 影响因子:3
- 作者:Wheatley RJ
- 通讯作者:Wheatley RJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Wheatley其他文献
Richard Wheatley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Wheatley', 18)}}的其他基金
A theoretical and experimental study of nitric oxide complexes.
一氧化氮复合物的理论和实验研究。
- 批准号:
EP/H004815/1 - 财政年份:2009
- 资助金额:
$ 18.61万 - 项目类别:
Research Grant
Computational studies of supercritical fluids
超临界流体的计算研究
- 批准号:
EP/E06082X/1 - 财政年份:2007
- 资助金额:
$ 18.61万 - 项目类别:
Research Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Journal of Computer Science and Technology
- 批准号:61224001
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Computer Science and Technology
- 批准号:61040017
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
(DISC) Demountable, Resilient, and Sustainable Construction Technology for Next- Generation Biologically Inspired Buildings
(DISC) 下一代仿生建筑的可拆卸、弹性和可持续建筑技术
- 批准号:
EP/Z000998/1 - 财政年份:2024
- 资助金额:
$ 18.61万 - 项目类别:
Fellowship
Next Generation Water Cherenkov Detector Technology Development For The Study Of Supernova Neutrinos
用于超新星中微子研究的下一代水切伦科夫探测器技术开发
- 批准号:
MR/Y034082/1 - 财政年份:2024
- 资助金额:
$ 18.61万 - 项目类别:
Fellowship
Inorganic/Organic Nanocomposite Particles (I/O-NP); A Platform Technology for Next Generation Healthcare Applications
无机/有机纳米复合粒子(I/O-NP);
- 批准号:
MR/Y020170/1 - 财政年份:2024
- 资助金额:
$ 18.61万 - 项目类别:
Fellowship
Blood metabolomics as a next-generation cancer diagnostic platform technology
血液代谢组学作为下一代癌症诊断平台技术
- 批准号:
10067218 - 财政年份:2024
- 资助金额:
$ 18.61万 - 项目类别:
Collaborative R&D
Building Capacity for Research in Technology-Based Social Entrepreneurship Education for the Next Generation of Engineering Leaders
为下一代工程领导者建设基于技术的社会创业教育研究能力
- 批准号:
2321188 - 财政年份:2023
- 资助金额:
$ 18.61万 - 项目类别:
Standard Grant
Zero-Emission: the Next-generation of Integrated Technology for Hydrogen storage (ZENITH)
零排放:下一代储氢集成技术(ZENITH)
- 批准号:
EP/X025403/1 - 财政年份:2023
- 资助金额:
$ 18.61万 - 项目类别:
Research Grant
Optimized Up-scaled Technology for Next Generation Solid Oxide Electrolysis
下一代固体氧化物电解的优化放大技术
- 批准号:
10063108 - 财政年份:2023
- 资助金额:
$ 18.61万 - 项目类别:
EU-Funded
The establishment of basic technology for next-generation phage therapy using metagenomics and synthetic biology
利用宏基因组学和合成生物学建立下一代噬菌体治疗的基础技术
- 批准号:
22KJ1099 - 财政年份:2023
- 资助金额:
$ 18.61万 - 项目类别:
Grant-in-Aid for JSPS Fellows
PFI-TT: Development of Novel Lens Technology for Next Generation Laser Manufacturing
PFI-TT:开发用于下一代激光制造的新型透镜技术
- 批准号:
2234413 - 财政年份:2023
- 资助金额:
$ 18.61万 - 项目类别:
Standard Grant
Chemistry for next-generation single-molecule fluorosequencing technology 2.0.
下一代单分子荧光测序技术2.0化学。
- 批准号:
10645898 - 财政年份:2023
- 资助金额:
$ 18.61万 - 项目类别:














{{item.name}}会员




