Grid Adaptive LES/DNS
网格自适应 LES/DNS
基本信息
- 批准号:EP/E018157/1
- 负责人:
- 金额:$ 13.25万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Combustion is currently the most widely used method of energy conversion that powers modern industry and society. This energy is provided from the combustion of fossil fuels that are a global finite resource which is diminishing on a daily basis. Emissions from the combustion of fossil fuels can also lead to environmental problems such as global warming. In order to convert energy more efficiently and less harmfully to the environment, it is desirable to gain a thorough understanding of the combustion process. The development of real combustion applications generally requires a series of experiments to test a design or theory. With the rapid growth in computing resources and numerical techniques, computer simulation testing can also be used in the design process at a fraction of the cost compared with an equivalent experiment. In addition, computer simulations can provide a wider range of information on a proposed design in a shorter time frame by sweeping through different configurations simultaneously. Current methods such as Reynolds Averaged Navier Stokes (RANS), where the time fluctuating flow equations are solved in an average form, and Large Eddy Simulations (LES), where only the smaller scales of motion are modelled are being used to simulate industrial problems. However, both of these methods require models to provide additional information that is lost due to there limitations. The proposed work will take these computational simulations to the next level by developing a hybrid method that combines LES and Direct Numerical Simulation (DNS), where all scales of motion are computed explicitly without recourse to any modelling. To the investigators knowledge, this will be the first attempt to combine LES and DNS to simulate combustion, and then compare to a much more costly full DNS. The results from this work are expected to give a better understanding of large scale turbulent combustion problems without a loss in accuracy. Finally, this method could form the basis for a robust and accurate simulation method that combustion designers can use to explore new configurations with confidence to provide the next generation of energy cheaper, safer and more environmentally friendly.
燃烧是目前使用最广泛的能源转换方法,为现代工业和社会提供动力。这种能源是通过燃烧化石燃料提供的,化石燃料是一种全球有限资源,每天都在减少。化石燃料燃烧排放的废气也可能导致全球变暖等环境问题。为了更有效地转换能源,减少对环境的危害,需要对燃烧过程有一个透彻的了解。实际燃烧应用的开发通常需要一系列实验来测试设计或理论。随着计算资源和数值技术的快速增长,计算机模拟测试也可以在设计过程中使用,与同等实验相比,成本只有很小的一部分。此外,通过同时扫描不同的配置,计算机模拟可以在更短的时间内提供关于拟议设计的更广泛的信息。目前的方法,如雷诺平均纳维斯托克斯(RANS),其中时间脉动流动方程以平均形式求解,以及大涡模拟(LES),其中只对较小尺度的运动进行建模,被用于模拟工业问题。然而,这两种方法都需要模型来提供由于这些限制而丢失的附加信息。这项拟议的工作将把这些计算模拟提高到一个新的水平,开发一种结合大涡模拟和直接数值模拟(DNS)的混合方法,其中所有运动尺度都是显式计算的,而不需要任何建模。据调查人员所知,这将是首次尝试将大气压和域名系统结合起来模拟燃烧,然后与成本更高的全域名系统进行比较。这项工作的结果有望在不损失精度的情况下更好地理解大尺度湍流燃烧问题。最后,这种方法可以为一种稳健和准确的模拟方法奠定基础,燃烧设计者可以使用该方法来自信地探索新的配置,以提供更便宜、更安全和更环保的下一代能源。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A proposed grid adaptive DNS/LES approach to Combustion simulations
提出的用于燃烧模拟的网格自适应 DNS/LES 方法
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:J Healy
- 通讯作者:J Healy
Large Eddy Simulation of Turbulent Flame Kernels
湍流火焰核的大涡模拟
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:R Dinesh
- 通讯作者:R Dinesh
Towards the development of a complete computational design system for practical combustion devices
为实际燃烧装置开发完整的计算设计系统
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:T Kipouros
- 通讯作者:T Kipouros
Large Eddy Simulation of a turbulent swirling coaxial jet
- DOI:10.1504/pcfd.2010.031561
- 发表时间:2010-02
- 期刊:
- 影响因子:0.7
- 作者:K. Dinesh;A. Savill;K. Jenkins;M. Kirkpatrick
- 通讯作者:K. Dinesh;A. Savill;K. Jenkins;M. Kirkpatrick
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl Jenkins其他文献
Advanced semantic segmentation of aircraft main components based on transfer learning and data-driven approach
- DOI:
10.1007/s00371-024-03686-8 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:2.900
- 作者:
Julien Thomas;Boyu Kuang;Yizhong Wang;Stuart Barnes;Karl Jenkins - 通讯作者:
Karl Jenkins
A Framework for Air Crash Accident Investigation with the Help of Virtual Reality
虚拟现实帮助下的空难事故调查框架
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Faisal Othman H Alburaidi;Karl Jenkins;Tom - 通讯作者:
Tom
Virtual Reality's Effects on Air Crash Accident Investigation Learning Interaction
虚拟现实对空难事故调查学习互动的影响
- DOI:
10.11591/csit.v4i2.p160-168 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Faisal Othman H Alburaidi;Karl Jenkins;Tom - 通讯作者:
Tom
Integration of renewable energy sources in tandem with electrolysis: A technology review for green hydrogen production
可再生能源与电解相结合:绿色制氢技术综述
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7.2
- 作者:
S. G. Nnabuife;Abdulhammed K. Hamzat;J. Whidborne;Boyu Kuang;Karl Jenkins - 通讯作者:
Karl Jenkins
Karl Jenkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl Jenkins', 18)}}的其他基金
High Performance Computing Support for United Kingdom Consortium on Turbulent Reacting Flows (UKCTRF)
为英国湍流反应流联盟 (UKCTRF) 提供高性能计算支持
- 批准号:
EP/K025104/1 - 财政年份:2014
- 资助金额:
$ 13.25万 - 项目类别:
Research Grant
Modelling and Simulation of Intermittent Flows
间歇流的建模与仿真
- 批准号:
EP/E036945/1 - 财政年份:2007
- 资助金额:
$ 13.25万 - 项目类别:
Research Grant
相似海外基金
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 13.25万 - 项目类别:
Fellowship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
- 批准号:
MR/X023303/1 - 财政年份:2024
- 资助金额:
$ 13.25万 - 项目类别:
Fellowship
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
- 批准号:
MR/X030261/1 - 财政年份:2024
- 资助金额:
$ 13.25万 - 项目类别:
Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
- 批准号:
MR/Y011635/1 - 财政年份:2024
- 资助金额:
$ 13.25万 - 项目类别:
Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 13.25万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 13.25万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 13.25万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 13.25万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 13.25万 - 项目类别:
Standard Grant