Approximate amenability for Banach algebras
Banach 代数的近似适用性
基本信息
- 批准号:EP/E026664/1
- 负责人:
- 金额:$ 1.99万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A Banach algebra is an abstract mathematical object that has both an algebraic and a topological structure, and mathematicians are eager to study the relationship of these two structures. They do this because the abstract objects seem to be of beauty and interest in their own right, but more because these objects cover many naturally occurring examples in mathematics.A very successful line of investigation covers that of amenable Banach algebras, and there are many fine theorems on such algebras. Nevertheless this concept does not cover all appropriate circumstances, and there is now considerable study of variations of this fundamental idea. Some of these variations were introduced by Ghahramani and Loy; essentially, they now consider approximately amenable Banach algebras .I propose to work with Dr. R. J. Loy (Australian National University, Canberra) to study these variants and determine which specfic Banach algebras possess the relevant properties, with a view to formulating a general theory.
Banach代数是一个抽象的数学对象,它同时具有代数和拓扑结构,数学家们渴望研究这两种结构之间的关系。他们这样做是因为抽象的对象似乎是美丽和兴趣在自己的权利,但更多的是因为这些对象涵盖了许多自然发生的例子,在aesticics.A非常成功的调查线涵盖了顺从Banach代数,有许多罚款定理等代数。然而,这一概念并不包括所有适当的情况,现在对这一基本思想的各种变化进行了大量的研究。这些变化中的一些是由Ghahramani和Loy引入的,本质上,他们现在考虑近似顺从的Banach代数。J. Loy(澳大利亚国立大学,堪培拉)研究这些变体,并确定哪些特定的Banach代数具有相关的性质,以期制定一个一般的理论。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximate amenability of semigroup algebras and Segal algebras
半群代数和 Segal 代数的近似服从性
- DOI:10.4064/dm474-0-1
- 发表时间:2010
- 期刊:
- 影响因子:1.8
- 作者:Dales H
- 通讯作者:Dales H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
H Dales其他文献
H Dales的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('H Dales', 18)}}的其他基金
Banach algebra and operator space techniques in topological group theory
拓扑群论中的巴纳赫代数和算子空间技术
- 批准号:
EP/I002316/1 - 财政年份:2010
- 资助金额:
$ 1.99万 - 项目类别:
Research Grant
Multi-norms and multi-Banach algebras
多范数和多Banach代数
- 批准号:
EP/H019405/1 - 财政年份:2009
- 资助金额:
$ 1.99万 - 项目类别:
Research Grant
相似海外基金
Amenability properties of semitopological semigroups and related Banach algebras
半拓扑半群和相关巴纳赫代数的顺应性性质
- 批准号:
RGPIN-2022-04137 - 财政年份:2022
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Characterisation of Amenability by Banach Algebras
用巴拿赫代数描述顺应性
- 批准号:
575968-2022 - 财政年份:2022
- 资助金额:
$ 1.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2021
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2021
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2020
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2020
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2019
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2019
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Generalized notions of amenability and derivations on Banach algebras related to locally compact groups
与局部紧群相关的 Banach 代数的顺从性和推导的广义概念
- 批准号:
RGPIN-2017-05476 - 财政年份:2018
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2018
- 资助金额:
$ 1.99万 - 项目类别:
Discovery Grants Program - Individual