SIGNAL: Stochastic process algebra for biochemical signalling pathway analysis

信号:用于生化信号通路分析的随机过程代数

基本信息

  • 批准号:
    EP/E028519/1
  • 负责人:
  • 金额:
    $ 40.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

The science of computational Systems Biology uses computer modellingof living organisms to help us understand those process at work insidewhich we cannot directly see or measure. Based on experimentallydetermined data, a systems biologist invents a model of how they thinkthat things work. The model is usually analysed by one of two kindsof computer simulation: stochastic or deterministic. In a stochasticsimulation the mathematical theory of probability is used to express adegree of uncertainty about how fast reactions happen or thequantities of reactants which are in use. In a deterministicsimulation the theory of ordinary differential equations is used togive an efficient continuous approximation of very large numbers ofmolecular elements. Computational modelling is helpful here becauselaboratory-based experimentation is an extremely expensive,time-consuming and labour-intensive process. An important subject forcomputational modelling is signal transduction.Signal transduction pathways are biochemical pathways which allowcells to sense a stimulus and communicate a signal to the nucleus,which then makes a suitable response. They are complicated signallingprocesses with built-in feedback mechanisms. Signalling pathways areembedded in larger networks and are involved in important processessuch as proliferation, cell growth, movement, cell communication, andprogrammed cell death (apoptosis). Malfunction results in a largenumber of diseases including cancer, diabetes and many others. Despiteenormous experimental advances in recent years there is still anabsence of good, predictive pathway models which can guideexperimentation and drug development. To date, models either encodestatic aspects such as which proteins have the potential to interact,or provide simulations of system dynamics using ordinary differentialequations.We will develop a novel approach to analytic pathway modelling basedon our experience of modelling concurrent computing systems. The keyidea is that pathways have stochastic, computational content. We willmodel pathways using stochastic process algebras which denotecontinuous time Markov chains thus affording new quantitative analysisand new ways to structure pathways and reason about incompletebehaviour.
计算系统生物学使用计算机模拟生物体来帮助我们理解那些我们无法直接看到或测量的内部工作过程。基于实验确定的数据,系统生物学家发明了一个他们认为事物如何工作的模型。该模型通常是由两种计算机模拟分析之一:随机或确定性。在随机模拟中,概率的数学理论被用来表达关于反应发生的速度或反应物的使用量的不确定性.在确定性模拟中,常微分方程理论被用来给出大量分子元素的有效连续近似。计算建模在这里是有帮助的,因为基于实验室的实验是一个极其昂贵,耗时和劳动密集型的过程。信号转导是计算机模拟的一个重要课题,信号转导通路是细胞感受刺激并将信号传递给细胞核,从而做出适当反应的生化通路。它们是具有内置反馈机制的复杂信号过程。信号通路嵌入在更大的网络中,并参与重要的过程,如增殖,细胞生长,运动,细胞通讯和程序性细胞死亡(凋亡)。功能失常会导致许多疾病,包括癌症、糖尿病和许多其他疾病。尽管近年来实验研究取得了巨大的进展,但仍然缺乏良好的、可预测的通路模型来指导实验和药物开发。到目前为止,模型要么encodestatic方面,如蛋白质有可能相互作用,或提供模拟系统动力学使用ordinary differentialequations.We将开发一种新的方法,分析pathway modeling basedon我们的经验,并行计算系统的建模。其核心思想是,路径具有随机性,计算性的内容。我们将使用随机过程代数表示连续时间马尔可夫链,从而提供新的定量分析和新的方法来结构路径和原因的不完全行为的途径建模.

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Model and Analysis of the AKAP Scaffold
  • DOI:
    10.1016/j.entcs.2010.12.002
  • 发表时间:
    2010-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oana Andrei;Muffy Calder
  • 通讯作者:
    Oana Andrei;Muffy Calder
Transactions on Computational Systems Biology XI
计算系统生物学汇刊 XI
  • DOI:
    10.1007/978-3-642-04186-0_1
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Calder M
  • 通讯作者:
    Calder M
A process algebra framework for multi-scale modelling of biological systems
用于生物系统多尺度建模的过程代数框架
  • DOI:
    10.1016/j.tcs.2013.03.018
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Degasperi A
  • 通讯作者:
    Degasperi A
Modular modelling of signalling pathways and their cross-talk
  • DOI:
    10.1016/j.tcs.2012.07.003
  • 发表时间:
    2012-10-19
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Donaldson, Robin;Calder, Muffy
  • 通讯作者:
    Calder, Muffy
Some Investigations Concerning the CTMC and the ODE Model Derived From Bio-PEPA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Muffy Calder其他文献

Practical Modelling with Bigraphs
使用 Bigraph 进行实用建模
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Archibald;Muffy Calder;Michele Sevegnani
  • 通讯作者:
    Michele Sevegnani
Electronic Communications of the EASST Volume 22 ( 2009 ) Proceedings of the Third International Workshop on Formal Methods for Interactive Systems ( FMIS 2009 ) Tightly coupled verification of pervasive systems
EASST 电子通信第 22 卷 (2009) 第三届交互式系统形式方法国际研讨会 (FMIS 2009) 普适系统的紧耦合验证
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muffy Calder;P. Gray;Chris Unsworth
  • 通讯作者:
    Chris Unsworth
Verifying BDI Agents in Dynamic Environments
在动态环境中验证 BDI 代理
Process Algebra with Hooks for Models of Pattern Formation
带有模式形成模型钩子的过程代数
  • DOI:
    10.1016/j.entcs.2010.12.004
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Degasperi;Muffy Calder
  • 通讯作者:
    Muffy Calder
Analysis of signalling pathways using the prism model checker
使用棱镜模型检查器分析信号通路
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muffy Calder;V. Vyshemirsky;David R. Gilbert;R. Orton
  • 通讯作者:
    R. Orton

Muffy Calder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Muffy Calder', 18)}}的其他基金

EPSRC Capital Award for Core Equipment 2020/21
EPSRC核心设备资本奖2020/21
  • 批准号:
    EP/V034294/1
  • 财政年份:
    2020
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Research Grant
EPSRC Core Capital Award
EPSRC核心资本奖
  • 批准号:
    EP/T024968/1
  • 财政年份:
    2019
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Research Grant
EPSRC Capital Award emphasising support for Early Career Researchers
EPSRC 资本奖强调对早期职业研究人员的支持
  • 批准号:
    EP/S017984/1
  • 财政年份:
    2018
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Research Grant
Bid for new Electron-Beam Lithography Tool
新型电子束光刻工具招标
  • 批准号:
    EP/P030459/1
  • 财政年份:
    2017
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Research Grant
Science of Sensor System Software
传感器系统软件科学
  • 批准号:
    EP/N007565/1
  • 财政年份:
    2016
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Research Grant
University of Glasgow - Equipment Account
格拉斯哥大学 - 设备帐户
  • 批准号:
    EP/J014478/1
  • 财政年份:
    2011
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Research Grant
Verifying Interoperability Requirements in Pervasive Systems
验证普及系统中的互操作性要求
  • 批准号:
    EP/F033206/1
  • 财政年份:
    2008
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Research Grant
Supporting crossover between quantitative modelling communities
支持定量建模社区之间的交叉
  • 批准号:
    EP/F013817/1
  • 财政年份:
    2007
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Research Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The role of Tex15 in shaping stochastic olfactory receptor gene choice.
Tex15 在塑造随机嗅觉受体基因选择中的作用。
  • 批准号:
    10826734
  • 财政年份:
    2023
  • 资助金额:
    $ 40.49万
  • 项目类别:
Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    RGPIN-2020-04469
  • 财政年份:
    2022
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Discovery Grants Program - Individual
2023 Stochastic Physics in Biology GRC & GRS
2023年生物随机物理GRC
  • 批准号:
    10609205
  • 财政年份:
    2022
  • 资助金额:
    $ 40.49万
  • 项目类别:
Performance design based on stochastic process simulation of multiscale internal structure in concrete
基于混凝土多尺度内部结构随机过程模拟的性能设计
  • 批准号:
    21K04211
  • 财政年份:
    2021
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Speech Processing Based on Deep Gaussian Process With Stochastic Differential Equation Layers
基于随机微分方程层深度高斯过程的语音处理
  • 批准号:
    21K11955
  • 财政年份:
    2021
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    RGPIN-2020-04469
  • 财政年份:
    2021
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Discovery Grants Program - Individual
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
  • 批准号:
    10323474
  • 财政年份:
    2021
  • 资助金额:
    $ 40.49万
  • 项目类别:
Long-range neuronal projections: circuit blueprint or stochastic targeting? Rigorous classification of brain-wide axonal reconstructions
远程神经元投射:电路蓝图还是随机目标?
  • 批准号:
    10360723
  • 财政年份:
    2021
  • 资助金额:
    $ 40.49万
  • 项目类别:
Automatic Deep Neural Network Design by a Novel Stochastic Search Process
通过新颖的随机搜索过程进行自动深度神经网络设计
  • 批准号:
    RGPIN-2020-04469
  • 财政年份:
    2020
  • 资助金额:
    $ 40.49万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic tuning: a novel regulatory mechanism for cellular adaptation
随机调谐:一种新的细胞适应调节机制
  • 批准号:
    10256756
  • 财政年份:
    2020
  • 资助金额:
    $ 40.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了