Image Reconstruction Algorithms for Optical Tomography

光学断层扫描图像重建算法

基本信息

  • 批准号:
    7465432
  • 负责人:
  • 金额:
    $ 34.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-05 至 2010-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of the proposed research is to solve the problem of developing computationally efficient image reconstruction algorithms for noncontact optical tomography (OT) with large data sets. Specifically, we intend to devise fast algorithms for three-dimensional image reconstruction at the megavoxel level. To achieve this goal, we will exploit recent advances obtained by the Investigators on analytic methods for image reconstruction in OT. The algorithms will be systematically studied by computer simulations and validated by experiments in model systems. This approach allows the separation of effects due to algorithmic errors from those due to measurement errors. The planned "benchtop" experiments are the next logical step after algorithm development but before clinical studies and are critical to the success of this proposal. The specific aims are to (1) Construct instrumentation for multispectral noncontact optical tomography. This will entail upgrading an existing single-wavelength continuous-wave OT system. The planned enhancements include an electron multiplying CCD camera for faster data acquisition and improved signal to noise; illumination at three wavelengths using optically switched diode lasers; and time-resolved transmission measurements using a pulsed Ti-sapphire laser for spectroscopic measurements of absorption and scattering; (2) Implement and optimize fast image reconstruction algorithms for OT with large data sets. The planned studies will first focus on nonlinear reconstruction of the absorption. The focus will then shift to simultaneous linear and nonlinear reconstruction of absorption and scattering using multispectral and multifrequency data. The algorithms will be tested and optimized using numerical simulations prior to experimental validation in phantoms; (3) Evaluate the performance of the above reconstruction algorithms using phantoms. The reconstruction algorithms will be tested in a set of experiments which parallel the numerical simulations carried out under specific aim 2. Image quality will be assessed in tissue-equivalent phantoms. We will utilize the parallel plate imaging geometry which is often employed in optical mammography. The results of this research are expected to impact the design of clinically useful instruments for noncontact optical tomography.
描述(申请人提供):本研究的目标是解决为大数据集的非接触式光学层析成像(OT)开发计算高效的图像重建算法的问题。具体地说,我们打算设计出用于兆像素级别的三维图像重建的快速算法。为了实现这一目标,我们将利用研究人员在OT图像重建的分析方法方面取得的最新进展。这些算法将通过计算机仿真进行系统的研究,并在模型系统中进行实验验证。这种方法允许将由算法误差引起的影响与由测量误差引起的影响分开。计划中的“台式”实验是在算法开发之后但在临床研究之前的下一个合乎逻辑的步骤,对这项提议的成功至关重要。具体目标是:(1)构建多光谱非接触光学层析成像仪器。这将需要升级现有的单波长连续波OT系统。计划中的改进措施包括:(1)安装电子倍增CCD相机,以加快数据采集速度,提高信噪比;(2)利用光学开关二极管激光器在三个波长进行照明;(2)利用脉冲钛蓝宝石激光器进行时间分辨的透射率测量,以便对吸收和散射进行光谱测量;(2)对大数据量的OT实施和优化快速图像重建算法。计划中的研究将首先集中在吸收的非线性重建上。然后,重点将转移到利用多光谱和多频率数据同时重建吸收和散射的线性和非线性。在体模实验验证之前,将使用数值模拟对算法进行测试和优化;(3)使用体模对上述重建算法的性能进行评估。重建算法将在一系列实验中进行测试,这些实验与在特定目标2下进行的数值模拟平行。图像质量将在组织等效模型中进行评估。我们将利用光学乳房摄影术中经常使用的平行板成像几何结构。这项研究的结果有望对临床上有用的非接触式光学断层扫描仪器的设计产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOHN C SCHOTLAND其他文献

JOHN C SCHOTLAND的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOHN C SCHOTLAND', 18)}}的其他基金

Image Reconstruction Algorithms for Optical Tomography
光学断层扫描图像重建算法
  • 批准号:
    7322416
  • 财政年份:
    2007
  • 资助金额:
    $ 34.85万
  • 项目类别:
Image Reconstruction Algorithms for Optical Tomography
光学断层扫描图像重建算法
  • 批准号:
    7608722
  • 财政年份:
    2007
  • 资助金额:
    $ 34.85万
  • 项目类别:
IMAGE RECONSTRUCTION ALGORITHMS FOR DIFFUSION TOMOGRAPHY
扩散断层扫描图像重建算法
  • 批准号:
    6977459
  • 财政年份:
    2004
  • 资助金额:
    $ 34.85万
  • 项目类别:
BREAST CANCER: DEMONSTRATION OF FREQUENCY DOMAIN DIFFUSIVE EMISSION TOMOGRAPHY
乳腺癌:频域扩散发射断层扫描演示
  • 批准号:
    6657653
  • 财政年份:
    2002
  • 资助金额:
    $ 34.85万
  • 项目类别:
NEAR FIELD IMAGING
近场成像
  • 批准号:
    6657654
  • 财政年份:
    2002
  • 资助金额:
    $ 34.85万
  • 项目类别:
NEAR FIELD IMAGING
近场成像
  • 批准号:
    6495463
  • 财政年份:
    2001
  • 资助金额:
    $ 34.85万
  • 项目类别:
BREAST CANCER: DEMONSTRATION OF FREQUENCY DOMAIN DIFFUSIVE EMISSION TOMOGRAPHY
乳腺癌:频域扩散发射断层扫描演示
  • 批准号:
    6495462
  • 财政年份:
    2001
  • 资助金额:
    $ 34.85万
  • 项目类别:
NEAR FIELD IMAGING
近场成像
  • 批准号:
    6349320
  • 财政年份:
    2000
  • 资助金额:
    $ 34.85万
  • 项目类别:
BREAST CANCER: DEMONSTRATION OF FREQUENCY DOMAIN DIFFUSIVE EMISSION TOMOGRAPHY
乳腺癌:频域扩散发射断层扫描演示
  • 批准号:
    6349319
  • 财政年份:
    2000
  • 资助金额:
    $ 34.85万
  • 项目类别:
DEVELOPMENT OF TOMOGRAPHIC RECONSTRUCTION ALGORITHMS FOR NEAR FIELD MICROSCOPY
近场显微镜断层重建算法的开发
  • 批准号:
    6121049
  • 财政年份:
    1998
  • 资助金额:
    $ 34.85万
  • 项目类别:

相似海外基金

Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 34.85万
  • 项目类别:
    Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 34.85万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2022
  • 资助金额:
    $ 34.85万
  • 项目类别:
    Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
  • 批准号:
    DP220102872
  • 财政年份:
    2022
  • 资助金额:
    $ 34.85万
  • 项目类别:
    Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2021
  • 资助金额:
    $ 34.85万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2020
  • 资助金额:
    $ 34.85万
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
  • 批准号:
    2004877
  • 财政年份:
    2020
  • 资助金额:
    $ 34.85万
  • 项目类别:
    Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9899988
  • 财政年份:
    2019
  • 资助金额:
    $ 34.85万
  • 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
  • 批准号:
    RGPIN-2015-06573
  • 财政年份:
    2019
  • 资助金额:
    $ 34.85万
  • 项目类别:
    Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
  • 批准号:
    9753458
  • 财政年份:
    2019
  • 资助金额:
    $ 34.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了