High Resolution Passive Imaging Using III-V Monolithic Millimetre Integrated Circuits (MMICs) Operating at 200GHz

使用工作频率为 200GHz 的 III-V 单片毫米集成电路 (MMIC) 进行高分辨率无源成像

基本信息

  • 批准号:
    EP/E044611/1
  • 负责人:
  • 金额:
    $ 26.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

This is a joint University of Glasgow, QinetiQ project in millimetre-wave imaging, primarily for safety and security applications - an excellent example of academia and industry working together to realise an operational, next generation, leading edge, functional prototype imaging system. The University of Glasgow is a world leading Centre in nanofabrication technology and millimetre-wave component design. Qinetiq is an internationally leading UK high technology company with particular specialism in producing advanced imaging systems.Millimetre-wave radar and imaging systems which operate in the 100-300 GHz frequency range, have numerous applications. Unlike infrared, millimetre-waves can penetrate fog, dust, smoke and light rain which makes them suitable for target acquisition, aircraft navigation, landing in zero visibility conditions and in unmanned autonomous aircraft.Millimetre-waves are able to passively detect concealed plastic and metal objects under clothing making them ideal for mass transportation security applications. In addition, the investigation of chemical and biological phenomena with non-ionising millimetre and terahertz waves may lead to compact detectors of dangerous substances and will enable new opportunities in medical diagnostic tools. Further, the ability of millimetre-waves to penetrate through few centimetres of sand render them capable of remote sensing and landmine clearing operation.The key to imaging and sensing systems operating at frequencies above 100 GHz is the realisation of ultra-high sensitivity Monolithic Millimetre-wave Integrated Circuits (MMIC's) in which low noise amplifiers (LNA's), detectors and antennas are combined on a single semiconductor chip. The function of the LNA is to amplify the received signal from the antenna, keeping the background noise at low level. The diode detector transforms the signals received into pixels with different shading intensities, and hence reconstructing a real image as the antenna scans across the target.Direct detection techniques have primarily been demonstrated only at frequencies below 100GHz, due to the performance limitations of current nano technologies and the largely unexplored design challenges at mm-wave frequencies beyond 100GHz. The advantages for implementing mm-wave frequencies beyond 100GHz are; higher resolution imaging, reduce cluttering, and smaller component size; hence a higher image definition, fewer false alarms, increasing safety factor, reduced cost, and less bulky systems can be realised. MMIC design for the applications mentioned above at millimetre-wave frequencies beyond 100 GHz, and specifically, next generation imaging systems operating at 200 GHz, presents major challenges in both technology and design. In technology, transistors with critical dimensions of 50nm (0.001x the diameter of a human hair), and three dimensional nano structures are required. In integrated circuit design beyond 100 GHz, all components produced on the chips are highly sensitive to their surroundings, including parasitic effects, so that every last FemtoFarad of capacitance an Ohm of resistance has to be considered. To insure a successful outcome, the overall project has been broken down into a number of tasks, each of which will be verified independently. The final prototype imaging system operating at 200GHz will be assembled and tested as a joint effort between the University of Glasgow and QinetiQ, both of whom are well established and internationally recognised research groups with the required technology and design expertise to successfully produce the demonstrator system. This project will allow the realisation of more compact, higher imaging resolution systems, paving the way for the next generation of single element and array imaging systems on a single chip.
这是格拉斯哥大学和QinetiQ在毫米波成像方面的联合项目,主要用于安全和安保应用——这是学术界和工业界共同努力实现可操作的、下一代的、前沿的、功能原型成像系统的一个很好的例子。格拉斯哥大学是世界领先的纳米制造技术和毫米波元件设计中心。Qinetiq是一家国际领先的英国高科技公司,专门生产先进的成像系统。工作在100-300 GHz频率范围内的毫米波雷达和成像系统有许多应用。与红外线不同,毫米波可以穿透雾、灰尘、烟雾和小雨,这使得它们适用于目标捕获、飞机导航、在零能见度条件下着陆和无人驾驶的自主飞机。毫米波能够被动地探测隐藏在衣服下的塑料和金属物体,使其成为大规模运输安全应用的理想选择。此外,对具有非电离毫米波和太赫兹波的化学和生物现象的研究可能导致危险物质的紧凑探测器,并将在医疗诊断工具方面带来新的机会。此外,毫米波穿透几厘米沙子的能力使它们能够进行遥感和扫雷行动。在100 GHz以上频率下工作的成像和传感系统的关键是实现超高灵敏度单片毫米波集成电路(MMIC),其中低噪声放大器(LNA),探测器和天线组合在单个半导体芯片上。LNA的作用是放大从天线接收的信号,使背景噪声保持在低水平。二极管探测器将接收到的信号转换成具有不同阴影强度的像素,从而在天线扫描目标时重建真实图像。由于当前纳米技术的性能限制,以及在100GHz以上的毫米波频率下存在大量未开发的设计挑战,直接探测技术主要只在100GHz以下的频率下进行了演示。实现100GHz以上毫米波频率的优点是:成像分辨率更高,减少杂波,元件尺寸更小;因此,可以实现更高的图像清晰度、更少的误报、更高的安全系数、更低的成本和更小的系统体积。针对上述100ghz以上毫米波频率应用的MMIC设计,特别是工作在200ghz的下一代成像系统,在技术和设计方面都面临重大挑战。在技术上,需要临界尺寸为50nm(人类头发直径的0.001倍)的晶体管和三维纳米结构。在100 GHz以上的集成电路设计中,芯片上生产的所有组件对其周围环境非常敏感,包括寄生效应,因此必须考虑每一个飞法拉的电容和欧姆的电阻。为了确保一个成功的结果,整个项目被分解成许多任务,每个任务都将被独立验证。在格拉斯哥大学和QinetiQ的共同努力下,最终的200GHz成像系统原型将被组装和测试,这两家大学都是国际公认的研究小组,拥有成功生产演示系统所需的技术和设计专业知识。该项目将实现更紧凑、更高成像分辨率的系统,为单芯片上的下一代单元件和阵列成像系统铺平道路。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel coupled-line bandpass filter with branch-line shape for g-band frequency
  • DOI:
    10.1049/el.2009.0716
  • 发表时间:
    2009-07
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    C. Hwang;L. B. Lok;I. Thayne;K. Elgaid
  • 通讯作者:
    C. Hwang;L. B. Lok;I. Thayne;K. Elgaid
Erratum for 'DC-35 GHz low-loss MMIC switch using 50 nm gate-length MHEMT technology for ultra-low-power applications'
“使用 50 nm 门长 MHEMT 技术实现超低功耗应用的 DC-35 GHz 低损耗 MMIC 开关”的勘误表
  • DOI:
    10.1049/el.2009.1741
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Hwang C
  • 通讯作者:
    Hwang C
Impact of waveguide aperture dimensions and misalignment on the calibrated performance of a network analyzer from 140 to 325GHz
200GHz broadband proximity coupled patch antenna
200GHz 宽带邻近耦合贴片天线
  • DOI:
    10.1109/icuwb.2009.5288756
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emhemmed A
  • 通讯作者:
    Emhemmed A
DC-35 GHz low-loss MMIC switch using 50 nm gate-length MHEMT technology for ultra-low-power applications
DC-35 GHz 低损耗 MMIC 开关,采用 50 nm 门长 MHEMT 技术,适用于超低功耗应用
  • DOI:
    10.1049/el.2009.0684
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Hwang C
  • 通讯作者:
    Hwang C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khaled Elgaid其他文献

Low-Loss MIM Capacitor on Thick SiO2 Dielectric for GaN-on-Si Substrates with Standard and Elevated Top Electrode Configurations
用于具有标准和升高顶部电极配置的 GaN-on-Si 衬底的厚 SiO2 电介质上的低损耗 MIM 电容器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Eblabla;Arathy Varghese;Hareesh Chandrashekar;M. Uren;M. Kuball;Khaled Elgaid
  • 通讯作者:
    Khaled Elgaid
Optimization and fabrication of MEMS based piezoelectric acoustic sensor for wide frequency range and high SPL acoustic application
  • DOI:
    10.1016/j.micrna.2023.207592
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ashish Kumar;Arathy Varghese;Girraj Sharma;Manish Kumar;Gaurav K Sharma;Mahanth Prasad;Vijay Janyani;R.P. Yadav;Khaled Elgaid
  • 通讯作者:
    Khaled Elgaid

Khaled Elgaid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khaled Elgaid', 18)}}的其他基金

Integration of RF Circuits with High Speed GaN Switching on Silicon Substrates
在硅衬底上集成射频电路与高速 GaN 开关
  • 批准号:
    EP/N014820/2
  • 财政年份:
    2018
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Research Grant
Integration of RF Circuits with High Speed GaN Switching on Silicon Substrates
在硅衬底上集成射频电路与高速 GaN 开关
  • 批准号:
    EP/N014820/1
  • 财政年份:
    2016
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Active and Passive Seismic Imaging of the Three-Dimensional Structure and Magma System beneath the Summit of Kilauea Volcano
合作研究:基拉韦厄火山顶下三维结构和岩浆系统的主动和被动地震成像
  • 批准号:
    2218645
  • 财政年份:
    2023
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Active and Passive Seismic Imaging of the Three-Dimensional Structure and Magma System beneath the Summit of Kilauea Volcano
合作研究:基拉韦厄火山顶下三维结构和岩浆系统的主动和被动地震成像
  • 批准号:
    2218646
  • 财政年份:
    2023
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Standard Grant
Mid-infrared passive spectral imaging by stealth multi-slit
隐形多缝中红外被动光谱成像
  • 批准号:
    22H01501
  • 财政年份:
    2022
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: High resolution passive seismic imaging beneath Valles caldera
合作研究:Valles破火山口下的高分辨率被动地震成像
  • 批准号:
    2113367
  • 财政年份:
    2021
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Standard Grant
Collaborative Research: High resolution passive seismic imaging beneath Valles Caldera
合作研究:Valles Caldera 下方的高分辨率被动地震成像
  • 批准号:
    2113315
  • 财政年份:
    2021
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Standard Grant
Contraband Detection in Prisons Using Safe, Continuous, Passive Terahertz Imaging (SafeJail)
使用安全、连续、被动太赫兹成像在监狱中检测违禁品 (SafeJail)
  • 批准号:
    53251
  • 财政年份:
    2020
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Study
New Methods and Processing Algorithms for Passive Radar Imaging
无源雷达成像新方法和处理算法
  • 批准号:
    410851921
  • 财政年份:
    2019
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Research Grants
Deep Learning for Passive RF Imaging
无源射频成像深度学习
  • 批准号:
    1809234
  • 财政年份:
    2018
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Standard Grant
Collaborative Research: COMPACT SUB-1 Kelvin Resolution Video Rate 94 GHz Passive Imaging Camera Using Optical UP-Conversion
合作研究:使用光学上转换的 COMPACT SUB-1 开尔文分辨率视频速率 94 GHz 被动成像相机
  • 批准号:
    1809728
  • 财政年份:
    2018
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Standard Grant
Collaborative Research: COMPACT SUB-1 Kelvin Resolution Video Rate 94 GHz Passive Imaging Camera using Optical UP-Conversion
合作研究:使用光学上转换的 COMPACT SUB-1 开尔文分辨率视频速率 94 GHz 被动成像相机
  • 批准号:
    1809875
  • 财政年份:
    2018
  • 资助金额:
    $ 26.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了