Deep Learning for Passive RF Imaging

无源射频成像深度学习

基本信息

  • 批准号:
    1809234
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Deep Learning for Passive Radio Frequency ImagingDeep Learning has enjoyed a spectacular success in wide range of machine learning applications in recent years. However, its potential as a mathematical tool in imaging is yet to be explored. This project develops a Deep Learning based theory, methods and algorithms for passive Radio Frequency (RF) imaging in complex environments using illuminators of opportunity. With the proliferation of wireless communications and broadcasting signals, passive RF imaging has emerged as a potential alternative to active imaging with several advantages. Passive imaging does not require spectrum allocation. It is environmentally friendly and capable of stealth operations. Passive RF systems are lightweight, small, inexpensive, and easy to build and operate, making them suitable for deployment on small uninhabited aerial vehicles (UAVs). These attributes make passive synthetic aperture radar (SAR) technology suitable for a vast array of everyday civilian applications ranging from agriculture to infrastructure monitoring.While UAV-based passive SAR has the potential to revolutionize imaging across many domains of applications, one of the fundamental bottlenecks in the deployment of these systems is the challenges in image formation. Unlike active imaging, passive SAR image reconstruction involves many unknowns and uncertainties including transmitter locations, transmitted waveforms, multiply scattering and dynamically changing wave propagation environments and limited communication and computational resources. These challenges rule out the use of existing methods such as the usual Fourier transform based or iterative ones.This project takes a radically different approach to imaging and interprets physics-based modeling and image reconstruction as machine learning tasks. Deep Learning excels in extracting features from data automatically bypassing hand-crafting process of modeling and feature engineering. Conventional approach to imaging involves physics based and statistical modeling, estimation, tomography and optimization. Central to this project is to remove this separation between different domains of expertise and learn and refine models and perform optimization within Deep Learning framework from training data. This takes advantage of Deep Learning's ability to generate complex, non-linear functions to jointly learn wave propagation and prior models and hyperparameters to improve accuracy and robustness. The network designs range from entirely data-driven model-free approaches to ones that are guided by Bayesian inference and optimization theory. The resulting image reconstruction methods are expected to be more robust and accurate with respect to uncertain and dynamically changing environments and unknown imaging parameters and computationally more efficient than state-of-the-art alternatives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无源射频成像的深度学习近年来,深度学习在广泛的机器学习应用中取得了巨大的成功。然而,它作为成像数学工具的潜力还有待探索。该项目开发了一种基于深度学习的理论、方法和算法,用于使用机会光源在复杂环境中进行无源射频(RF)成像。随着无线通信和广播信号的扩散,无源射频成像已成为有源成像的潜在替代方案,具有几个优点。被动成像不需要频谱分配。它是环保的,能够隐身作战。无源射频系统重量轻,体积小,价格低廉,易于构建和操作,适合部署在小型无人飞行器(uav)上。这些属性使得被动合成孔径雷达(SAR)技术适用于从农业到基础设施监测等广泛的日常民用应用。虽然基于无人机的无源SAR有可能在许多应用领域彻底改变成像,但这些系统部署的基本瓶颈之一是图像生成方面的挑战。与主动成像不同,被动SAR图像重建涉及许多未知和不确定因素,包括发射机位置、发射波形、多次散射和动态变化的波传播环境,以及有限的通信和计算资源。这些挑战排除了现有方法的使用,如通常的基于傅立叶变换或迭代的方法。该项目采用了一种完全不同的成像方法,并将基于物理的建模和图像重建解释为机器学习任务。深度学习擅长于从数据中自动提取特征,而无需手工建模和特征工程。传统的成像方法包括基于物理和统计建模、估计、断层成像和优化。该项目的核心是消除不同专业领域之间的分离,并从训练数据中学习和改进模型,并在深度学习框架内执行优化。这利用了深度学习生成复杂非线性函数的能力来共同学习波传播和先验模型以及超参数,以提高准确性和鲁棒性。网络设计的范围从完全数据驱动的无模型方法到由贝叶斯推理和优化理论指导的方法。由此产生的图像重建方法预计将在不确定和动态变化的环境以及未知的成像参数方面更加稳健和准确,并且在计算上比最先进的替代方法更有效。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unrolled Wirtinger Flow With Deep Decoding Priors for Phaseless Imaging
  • DOI:
    10.1109/tci.2022.3189217
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Samia Kazemi;Bariscan Yonel;B. Yazıcı
  • 通讯作者:
    Samia Kazemi;Bariscan Yonel;B. Yazıcı
Deep Learning based Synthetic Aperture Imaging in the Presence of Phase Errors via Decoding Priors
  • DOI:
    10.1109/radarconf2351548.2023.10149740
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samia Kazemi;Bariscan Yonel;B. Yazıcı
  • 通讯作者:
    Samia Kazemi;Bariscan Yonel;B. Yazıcı
A Deterministic Theory for Exact Non-Convex Phase Retrieval
  • DOI:
    10.1109/tsp.2020.3007967
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Bariscan Yonel;B. Yazıcı
  • 通讯作者:
    Bariscan Yonel;B. Yazıcı
Moving Target Imaging for Synthetic Aperture Radar Via RPCA
  • DOI:
    10.1109/radarconf2147009.2021.9455293
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sean Thammakhoune;Bariscan Yonel;Eric Mason;B. Yazıcı;Yonina C. Eldar
  • 通讯作者:
    Sean Thammakhoune;Bariscan Yonel;Eric Mason;B. Yazıcı;Yonina C. Eldar
A Spectral Estimation Framework for Phase Retrieval via Bregman Divergence Minimization
  • DOI:
    10.1137/20m1388061
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bariscan Yonel;B. Yazıcı
  • 通讯作者:
    Bariscan Yonel;B. Yazıcı
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Birsen Yazici其他文献

RF tomography for building penetration
用于建筑物穿透的射频断层扫描
  • DOI:
    10.1109/radar.2011.5960573
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Lo Monte;Michael C. Wicks;Birsen Yazici
  • 通讯作者:
    Birsen Yazici
Inversion of the circular averages transform using the Funk transform
使用 Funk 变换对循环平均变换进行反转
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Yarman;Birsen Yazici
  • 通讯作者:
    Birsen Yazici

Birsen Yazici的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Birsen Yazici', 18)}}的其他基金

CIF: Small: Theory, Methods and Algorithms for Synthetic Aperture Interferometry Using Ultra-Narrowband Waveforms
CIF:小:使用超窄带波形的合成孔径干涉测量的理论、方法和算法
  • 批准号:
    1421496
  • 财政年份:
    2014
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CIF: Small: Computationally Efficient Analytic Reconstructions via Embeddings and Sparsity for Non-Linear Dynamic Imaging Problems
CIF:小:通过嵌入和稀疏性对非线性动态成像问题进行计算高效的分析重建
  • 批准号:
    1218805
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Multi-platform Synthetic Aperture Imaging in Complex Environments via Microlocal Techniques
通过微局域技术在复杂环境中进行多平台合成孔径成像
  • 批准号:
    0830672
  • 财政年份:
    2008
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
SGER: Fast Iterative Methods for Diffuse Optical Tomography
SGER:漫反射光学断层扫描的快速迭代方法
  • 批准号:
    0332892
  • 财政年份:
    2003
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
SGER: Fast Iterative Methods for Diffuse Optical Tomography
SGER:漫反射光学断层扫描的快速迭代方法
  • 批准号:
    0353160
  • 财政年份:
    2003
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332662
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241796
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241795
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
MCA Pilot PUI: Leveraging machine learning to better understand biodiversity patterns measured through passive acoustic sampling
MCA Pilot PUI:利用机器学习更好地了解通过被动声学采样测量的生物多样性模式
  • 批准号:
    2322350
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
A Study on Misuse of Japanese Passive Expressions: Focusing on Native Chinese-Speakers Learning Japanese
日语被动表达误用研究——以汉语为母语的日语学习者为中心
  • 批准号:
    22K20011
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Seeing the Unseen: Passive RF Sensing via Learning
看到看不见的东西:通过学习进行无源射频传感
  • 批准号:
    2036236
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Passive mobile sensing and machine learning for the detection of drinking episodes
用于检测饮酒事件的被动移动传感和机器学习
  • 批准号:
    10349454
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
Passive mobile sensing and machine learning for the detection of drinking episodes
用于检测饮酒事件的被动移动传感和机器学习
  • 批准号:
    10555250
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
Machine learning techniques for passive, remote monitoring of elderly heart failure patients from home
用于在家中被动远程监测老年心力衰竭患者的机器学习技术
  • 批准号:
    10187779
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了