New high-performance avalanche photodiodes based on the unique properties of dilute nitrides
基于稀氮化物独特性能的新型高性能雪崩光电二极管
基本信息
- 批准号:EP/E065007/1
- 负责人:
- 金额:$ 23.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
To meet the demands of the internet to transmit large volumes of data over long distances, information is sent as short pulses of light. The photodetector which receives this information must have high sensitivity, a fast response, and low levels of 'noise' (random spurious signals). Photodetectors can even be made sensitive enough to detect single photons, and 'photon counting' is an important technique in many applications including sequencing the human genome and quantum computing. Most high-sensitivity photodetectors are semiconductor avalanche photodiodes (APDs): semiconductor materials are robust, cheap, compact, and efficient, while APDs make use of an effect where a very weak signal can trigger a very large current flow (like a single snowflake setting off a massive avalanche of snow).There are many different semiconducting materials, and each is sensitive to a different colour of light or wavelength. While silicon works really well as an APD, it doesn't detect infrared light at the wavelengths needed for optical communications and other applications. We can use combinations of material - one to absorb the light and one to do the avalanche multiplication - but it can be tricky getting the signal across from one material to the other. So APDs are hard to make and therefore expensive. We are going to make new types of APDs with the performance of silicon but sensitive to infrared light, which are also easier/cheaper to make than existing infrared detectors. Firstly, we are going to use a relatively new type of semiconductor (a 'dilute nitride') as the absorbing layer. Dilute nitrides are completely different from other materials: adding a small amount of nitrogen to a conventional semiconductor like gallium arsenide has a huge effect on the properties and can make it sensitive to infrared light. Dilute nitrides even seem to be less noisy than other absorbing layers, since their special properties suppress a source of noise which comes from quantum mechanical tunneling (electrons feel 'heavier' in dilute nitrides and find it harder to tunnel through barriers).Secondly, we are going to replace the conventional multiplication layer made of indium phosphide or gallium arsenide, which compared to multiplication layers made of silicon are rather noisy. The noise comes because multiplication is random: we know the probability that multiplication will occur within a certain time, but not exactly when it will occur. The particular electronic properties of dilute nitrides means that electrons in one energy band (the valance band) can easily trigger avalanches, while electrons in another band (the conduction band) should find it very hard. This situation should lead to very low multiplication noise, perhaps even as low as silicon, and has never been studied before.There is a lot of interesting physics in the movement of electrons in dilute nitride semiconductors, and in the statistics of avalanche multiplication in thin layers. We will use specialized techniques to study these, including squeezing the material under very high pressures to change its properties. This will give us the understanding we need to produce better high-sensitivity light detectors, which are useful for communications, medicine, pollution monitoring, and many other areas that affect our daily lives.
为了满足互联网长距离传输大量数据的需求,信息以短脉冲光的形式发送。接收该信息的光电探测器必须具有高灵敏度、快速响应和低水平的“噪声”(随机寄生信号)。光电探测器甚至可以灵敏到足以检测单个光子,并且“光子计数”在许多应用中是一种重要的技术,包括人类基因组测序和量子计算。大多数高灵敏度光电探测器是半导体雪崩光电二极管(APD):半导体材料坚固、便宜、紧凑、高效,而APD利用一种效应,即非常微弱的信号可以触发非常大的电流(就像一片雪花引发巨大的雪崩)。有许多不同的半导体材料,每种材料对不同颜色的光或波长敏感。虽然硅作为APD工作得很好,但它不能检测光通信和其他应用所需波长的红外光。我们可以使用材料的组合-一种吸收光,一种进行雪崩倍增-但将信号从一种材料传递到另一种材料可能很棘手。所以APD很难制造,因此价格昂贵。我们将制造具有硅性能但对红外光敏感的新型APD,它们也比现有的红外探测器更容易/更便宜。首先,我们将使用一种相对较新的半导体(“稀氮化物”)作为吸收层。稀氮化物与其他材料完全不同:向砷化镓等传统半导体中添加少量氮会对性能产生巨大影响,并使其对红外光敏感。稀氮化物甚至似乎比其他吸收层噪音更小,因为它们的特殊性质抑制了来自量子力学隧穿的噪音源(电子在稀释的氮化物中感觉“更重”,并且发现更难穿过势垒)。其次,我们将取代由磷化铟或砷化镓制成的传统倍增层,其与由硅制成的倍增层相比噪声相当大。噪声的出现是因为乘法是随机的:我们知道乘法在一定时间内发生的概率,但不知道它发生的确切时间。稀氮化物的特殊电子性质意味着一个能带(价带)中的电子可以很容易地触发雪崩,而另一个能带(导带)中的电子应该很难。这种情况应该会导致非常低的倍增噪声,甚至可能低到硅的程度,以前从未研究过。在稀氮化物半导体中电子的运动,以及薄层中雪崩倍增的统计中,有很多有趣的物理学。我们将使用专门的技术来研究这些,包括在非常高的压力下挤压材料以改变其特性。这将使我们了解我们需要生产更好的高灵敏度光探测器,这对通信,医学,污染监测和影响我们日常生活的许多其他领域都很有用。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental evaluation of impact ionization in dilute nitride GaInNAs diodes
稀氮化物 GaInNAs 二极管碰撞电离的实验评估
- DOI:10.1063/1.4819846
- 发表时间:2013
- 期刊:
- 影响因子:4
- 作者:Tan S
- 通讯作者:Tan S
Reduction of dark current and unintentional background doping in InGaAsN photodetectors by ex situ annealing
通过异位退火减少 InGaAsN 光电探测器中的暗电流和无意背景掺杂
- DOI:10.1117/12.853912
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Tan S
- 通讯作者:Tan S
Improved Optoelectronic Properties of Rapid Thermally Annealed Dilute Nitride GaInNAs Photodetectors
快速热退火稀氮化物 GaInNAs 光电探测器光电性能的改进
- DOI:10.1007/s11664-012-2245-9
- 发表时间:2012
- 期刊:
- 影响因子:2.1
- 作者:Tan S
- 通讯作者:Tan S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Paul Raj David其他文献
John Paul Raj David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
海洋微藻生物固定燃煤烟气中CO2的性能与机理研究
- 批准号:50806049
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Web服务质量(QoS)控制的策略、模型及其性能评价研究
- 批准号:60373013
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Back-irradiated flat panel imager with avalanche gain
具有雪崩增益的背照式平板成像仪
- 批准号:
10094215 - 财政年份:2018
- 资助金额:
$ 23.54万 - 项目类别:
Novel III-V heterostructures and designs for high-performance avalanche photodiode devices
用于高性能雪崩光电二极管器件的新型 III-V 异质结构和设计
- 批准号:
495842-2016 - 财政年份:2018
- 资助金额:
$ 23.54万 - 项目类别:
Collaborative Research and Development Grants
Novel III-V heterostructures and designs for high-performance avalanche photodiode devices
用于高性能雪崩光电二极管器件的新型 III-V 异质结构和设计
- 批准号:
495842-2016 - 财政年份:2017
- 资助金额:
$ 23.54万 - 项目类别:
Collaborative Research and Development Grants
Novel III-V heterostructures and designs for high-performance avalanche photodiode devices
用于高性能雪崩光电二极管器件的新型 III-V 异质结构和设计
- 批准号:
495842-2016 - 财政年份:2016
- 资助金额:
$ 23.54万 - 项目类别:
Collaborative Research and Development Grants
New high-performance avalanche photodiodes based on the unique properties of dilute nitrides
基于稀氮化物独特性能的新型高性能雪崩光电二极管
- 批准号:
EP/E063632/1 - 财政年份:2008
- 资助金额:
$ 23.54万 - 项目类别:
Research Grant
SBIR Phase I: Selective Area Hydrogenation for High Performance Monolithic HgCdTe NIR Avalanche Photo Diode Arrays
SBIR 第一阶段:高性能单片 HgCdTe 近红外雪崩光电二极管阵列的选择性区域氢化
- 批准号:
0539316 - 财政年份:2006
- 资助金额:
$ 23.54万 - 项目类别:
Standard Grant
Flat-panel X-ray Imaging Detector with Avalanche Gain
具有雪崩增益的平板 X 射线成像探测器
- 批准号:
7261359 - 财政年份:2003
- 资助金额:
$ 23.54万 - 项目类别:
Flat-panel x-ray imaging detector with avalanche gain
具有雪崩增益的平板 X 射线成像探测器
- 批准号:
8513327 - 财政年份:2003
- 资助金额:
$ 23.54万 - 项目类别:
Flat-panel x-ray imaging detector with avalanche gain
具有雪崩增益的平板 X 射线成像探测器
- 批准号:
8126414 - 财政年份:2003
- 资助金额:
$ 23.54万 - 项目类别:
Flat-panel x-ray imaging detector with avalanche gain
具有雪崩增益的平板 X 射线成像探测器
- 批准号:
8299134 - 财政年份:2003
- 资助金额:
$ 23.54万 - 项目类别: