Directed graphs and the regularity method

有向图和正则方法

基本信息

  • 批准号:
    EP/F008406/1
  • 负责人:
  • 金额:
    $ 15.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2007
  • 资助国家:
    英国
  • 起止时间:
    2007 至 无数据
  • 项目状态:
    已结题

项目摘要

A graph consists of a set of vertices, some of which are joined by edges. Graphs arise naturally in many parts of Pure and Applied Mathematics, as well as Computer Science. A particularly important and difficult graph theoretical problem is that of determining which graphs contain a Hamilton cycle (a Hamilton cycle is a cycle which contains all the vertices of a graph). Some progress has been made towards this in the case of undirected graphs. However, several corresponding conjectures for directed graphs have been open for decades.We intend to use the `regularity method' to approach these problems. The idea behind this is that dense large-scale objects can often be approximated by quasi-random objects with a very simple structure. Since its initial application by Szemeredi in 1978 to prove the existence of arbitrary long arithmetic progressions in dense subsets of the integers, this method has led to major advances in many branches of Combinatorics and beyond. However, the method does have its limitations. Our approaches to the above Hamiltonicity problems will involve further developments of the method. We believe that these will in turn lead to new applications. Some of these will be investigated as part of the proposed research.The NP-completeness of the Hamilton cycle problem means that it is unlikely that an efficient algorithm for the problem exists. This also applies to the related problems considered in the proposal. So all one can hope for are algorithms which work for a wide class of (directed) graphs. In particular, one would like positive results on the existence of Hamilton cycles to be constructive, i.e. they should come with an algorithm which actually finds the guaranteed Hamilton cycle in polynomial time. Accordingly, we intend to use approaches which are constructive in this sense.
图由一组顶点组成,其中一些顶点由边连接。图形在纯数学和应用数学以及计算机科学的许多部分中自然出现。一个特别重要和困难的图论问题是,确定哪些图包含一个汉密尔顿循环(一个汉密尔顿循环是一个循环,其中包含所有顶点的图)。在无向图的情况下,这方面已经取得了一些进展。然而,有向图的几个相应的问题已经公开了几十年,我们打算使用“正则性方法”来处理这些问题。这背后的想法是,密集的大规模对象通常可以近似为具有非常简单结构的准随机对象。自1978年Szemeredi首次应用于证明整数稠密子集中任意长算术级数的存在性以来,这种方法在组合学的许多分支中取得了重大进展。然而,该方法确实有其局限性。我们对上述哈密顿性问题的研究将涉及到该方法的进一步发展。我们相信,这些将反过来导致新的应用。其中一些将被调查的一部分,拟议research.The NP-完全性的汉密尔顿循环问题意味着它是不可能的,一个有效的算法存在的问题。这也适用于提案中考虑的相关问题。因此,人们所能希望的是适用于广泛的一类(有向)图的算法。特别是,人们希望积极的结果存在的汉密尔顿周期是建设性的,即他们应该来与算法,实际上发现保证汉密尔顿周期在多项式时间。因此,我们打算采用在这方面具有建设性的办法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A semi-exact degree condition for Hamilton cycles in digraphs
有向图中汉密尔顿循环的半精确度条件
  • DOI:
    10.48550/arxiv.1002.3910
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christofides D
  • 通讯作者:
    Christofides D
Hamiltonian degree sequences in digraphs
有向图中的哈密顿度序列
  • DOI:
    10.48550/arxiv.0807.1827
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kühn D
  • 通讯作者:
    Kühn D
A Dirac type result on Hamilton cycles in oriented graphs
有向图中汉密尔顿循环的狄拉克型结果
  • DOI:
    10.48550/arxiv.0709.1047
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kelly L
  • 通讯作者:
    Kelly L
A Semiexact Degree Condition for Hamilton Cycles in Digraphs
  • DOI:
    10.1137/090761756
  • 发表时间:
    2010-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Demetres Christofides;Peter Keevash;D. Kühn;Deryk Osthus
  • 通讯作者:
    Demetres Christofides;Peter Keevash;D. Kühn;Deryk Osthus
Approximate Hamilton decompositions of random graphs
随机图的近似哈密尔顿分解
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniela Kuehn其他文献

Daniela Kuehn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniela Kuehn', 18)}}的其他基金

Combinatorics, Probability and Algorithms
组合学、概率和算法
  • 批准号:
    EP/N019504/1
  • 财政年份:
    2016
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Fellowship
Randomized approaches to combinatorial packing and covering problems
组合包装和覆盖问题的随机方法
  • 批准号:
    EP/M009408/1
  • 财政年份:
    2015
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Research Grant
Probabilistic Methods in Graph Theory
图论中的概率方法
  • 批准号:
    EP/D50564X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Research Grant

相似国自然基金

不完备信息下基于流向图的诊断知识获取理论与方法
  • 批准号:
    51175102
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
线性码、群码和格的trellis研究
  • 批准号:
    60772131
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Standard Grant
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
  • 批准号:
    DP240101322
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Discovery Projects
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Research Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards Processing of Big Streaming Temporal Graphs
面向大流时态图的处理
  • 批准号:
    DE240100668
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Discovery Early Career Researcher Award
Developing Algorithms for Identifying Gene Modules in Single-Cell RNA-Seq Using Signed Graphs
开发使用符号图识别单细胞 RNA-Seq 中基因模块的算法
  • 批准号:
    24K18100
  • 财政年份:
    2024
  • 资助金额:
    $ 15.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了