Randomized approaches to combinatorial packing and covering problems

组合包装和覆盖问题的随机方法

基本信息

  • 批准号:
    EP/M009408/1
  • 负责人:
  • 金额:
    $ 32.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Many important questions can be formulated as covering and packing problems. This makes the study of such problems crucial both from an algorithmic and a more structural point of view. Recent ideas and methods from discrete probability theory have led to several breakthroughs in the area, with the potential to reshape the field. Here in a packing problem the task is to organize as many elements of a given structure as possible into suitable disjoint substructures. In a covering problem the task is to cover all elements of a given structure by as few as possible suitable substructures (which are not necessarily disjoint). These problems can be viewed as "duals" of each other. In particular, their solutions sometimes coincide, in which case we obtain a decomposition of the given structure.A classical example occurs in design theory: under suitable divisibility conditions a Steiner Triple System gives a decomposition of the edges of a complete graph into edge-disjoint triangles, i.e. the optimal solution of the triangle packing problem equals that of the triangle covering problem. Such problems have a long history going back to the 19th century and have many applications, e.g. to testing, statistical design and coding theory. The project intends to approach long-standing questions concerning optimal packings in non-complete host graphs. These have applications e.g. in communication networks. Another related strand is to study packings and coverings involving more complex structures such as spanning trees and resolvable designs. We intend to provide a powerful algorithmic tool for such questions which can be viewed as near-optimal packing version of the famous Blow-up Lemma. This would have numerous structural and algorithmic applications. Furthermore, the packing and covering viewpoint can be valuable in a much broader context. In particular, we propose to employ it to study the Boolean Satisfiability Problem k-SAT. The k-SAT problem is computationally intractable and of fundamental importance in theoretical computer science. Again, the probabilistic perspective has proved to be invaluable. By formulating the k-SAT problem as a hypergraph covering problem, we will aim to solve key open problems regarding statistical properties of random k-SAT formulas.
许多重要的问题都可以表示为覆盖问题和装箱问题。这使得对这类问题的研究无论是从算法角度还是从更具结构性的角度来看都至关重要。最近来自离散概率理论的想法和方法导致了该领域的几项突破,有可能重塑该领域。在这里,在布局问题中,任务是将给定结构中尽可能多的元素组织到合适的不相交的子结构中。在覆盖问题中,任务是用尽可能少的合适的子结构(不一定是不相交的)来覆盖给定结构的所有元素。这些问题可以被看作是彼此的“二重奏”。具体地说,它们的解有时是重合的,在这种情况下,我们得到了给定结构的分解。设计理论中出现了一个经典的例子:在适当的可分性条件下,Steiner三元系将完全图的边分解成边不相交的三角形,即三角形布局问题的最优解等于三角形覆盖问题的最优解。这类问题有很长的历史,可以追溯到19世纪,并有许多应用,例如测试、统计设计和编码理论。该项目旨在解决长期存在的关于非完全宿主图中的最优填充的问题。这些具有例如在通信网络中的应用。另一个相关的方向是研究涉及更复杂结构的填充和覆盖,如生成树和可分解设计。我们打算为这类问题提供一个强大的算法工具,它可以被视为著名的Blow-up引理的近最优包装版本。这将会有许多结构和算法上的应用。此外,包装和覆盖的观点在更广泛的背景下可能是有价值的。特别地,我们建议将其应用于研究布尔可满足性问题k-SAT。K-SAT问题在计算上是一个棘手的问题,在理论计算机科学中具有重要意义。事实再次证明,概率观点是无价的。通过将k-SAT问题描述为超图覆盖问题,我们将致力于解决关于随机k-SAT公式的统计性质的关键公开问题。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the decomposition threshold of a given graph
关于给定图的分解阈值
How to determine if a random graph with a fixed degree sequence has a giant component
如何确定具有固定度数序列的随机图是否具有巨型分量
ON THE HARD SPHERE MODEL AND SPHERE PACKINGS IN HIGH DIMENSIONS
论高维硬球模型和球填料
  • DOI:
    10.1017/fms.2018.25
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    JENSSEN M
  • 通讯作者:
    JENSSEN M
Frames, $A$-Paths, and the Erdös--Pósa Property
框架、$A$-路径和 Erdös--Pàsa 属性
Long Cycles have the Edge-Erdos-Pósa Property
长周期具有边缘-鄂尔多斯-波萨性质
  • DOI:
    10.1007/s00493-017-3669-x
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Bruhn H
  • 通讯作者:
    Bruhn H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniela Kuehn其他文献

Daniela Kuehn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniela Kuehn', 18)}}的其他基金

Combinatorics, Probability and Algorithms
组合学、概率和算法
  • 批准号:
    EP/N019504/1
  • 财政年份:
    2016
  • 资助金额:
    $ 32.91万
  • 项目类别:
    Fellowship
Directed graphs and the regularity method
有向图和正则方法
  • 批准号:
    EP/F008406/1
  • 财政年份:
    2007
  • 资助金额:
    $ 32.91万
  • 项目类别:
    Research Grant
Probabilistic Methods in Graph Theory
图论中的概率方法
  • 批准号:
    EP/D50564X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 32.91万
  • 项目类别:
    Research Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Novel Coalescent Approaches for Studying Evolutionary Processes
研究进化过程的新联合方法
  • 批准号:
    10552480
  • 财政年份:
    2023
  • 资助金额:
    $ 32.91万
  • 项目类别:
Novel spatial-motor approaches targeting post-stroke spatial neglect and gait deficits
针对中风后空间忽视和步态缺陷的新型空间运动方法
  • 批准号:
    10606908
  • 财政年份:
    2023
  • 资助金额:
    $ 32.91万
  • 项目类别:
Exploiting new approaches for selective inhibition of trypsins
开发选择性抑制胰蛋白酶的新方法
  • 批准号:
    10338695
  • 财政年份:
    2022
  • 资助金额:
    $ 32.91万
  • 项目类别:
Exploiting new approaches for selective inhibition of trypsins
开发选择性抑制胰蛋白酶的新方法
  • 批准号:
    10542402
  • 财政年份:
    2022
  • 资助金额:
    $ 32.91万
  • 项目类别:
Combinatorial Approaches to Deformation and Degeneration in Algebraic Geometry
代数几何中变形和退化的组合方法
  • 批准号:
    RGPIN-2021-02956
  • 财政年份:
    2022
  • 资助金额:
    $ 32.91万
  • 项目类别:
    Discovery Grants Program - Individual
Predictive Approaches and Technology Development for Identification of Susceptibility to Multiple Independent Infections in Trauma Patients
识别创伤患者多重独立感染易感性的预测方法和技术开发
  • 批准号:
    10455798
  • 财政年份:
    2021
  • 资助金额:
    $ 32.91万
  • 项目类别:
Combinatorial Approaches to Deformation and Degeneration in Algebraic Geometry
代数几何中变形和退化的组合方法
  • 批准号:
    RGPIN-2021-02956
  • 财政年份:
    2021
  • 资助金额:
    $ 32.91万
  • 项目类别:
    Discovery Grants Program - Individual
Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
  • 批准号:
    10655876
  • 财政年份:
    2021
  • 资助金额:
    $ 32.91万
  • 项目类别:
Combinatorial and Probabilistic Approaches to Oscillator and Clock Synchronization
振荡器和时钟同步的组合和概率方法
  • 批准号:
    2232241
  • 财政年份:
    2021
  • 资助金额:
    $ 32.91万
  • 项目类别:
    Standard Grant
Assessing Alzheimer disease risk and heterogeneity using multimodal machine learning approaches
使用多模式机器学习方法评估阿尔茨海默病风险和异质性
  • 批准号:
    10296695
  • 财政年份:
    2021
  • 资助金额:
    $ 32.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了